Files
lk/app/tests/float.c
2025-06-10 23:30:11 -07:00

156 lines
4.2 KiB
C

/*
* Copyright (c) 2013-2015 Travis Geiselbrecht
*
* Use of this source code is governed by a MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT
*/
#if ARM_WITH_VFP || ARCH_ARM64 || X86_WITH_FPU || (ARCH_RISCV && RISCV_FPU)
#include <stdio.h>
#include <inttypes.h>
#include <rand.h>
#include <string.h>
#include <lk/err.h>
#include <lk/console_cmd.h>
#include <app/tests.h>
#include <kernel/thread.h>
#include <kernel/mutex.h>
#include <kernel/semaphore.h>
#include <kernel/event.h>
#include <platform.h>
extern void float_vfp_arm_instruction_test(void);
extern void float_vfp_thumb_instruction_test(void);
extern void float_neon_arm_instruction_test(void);
extern void float_neon_thumb_instruction_test(void);
#if ARM_WITH_VFP_SP_ONLY
#define FLOAT float
#else
#define FLOAT double
#endif
/* optimize this function to cause it to try to use a lot of registers */
__OPTIMIZE("O3")
static int float_thread(void *arg) {
FLOAT *val = arg;
FLOAT a[16];
/* do a bunch of work with floating point to test context switching */
a[0] = *val;
for (size_t i = 1; i < countof(a); i++) {
a[i] = a[i-1] * (FLOAT)1.01f;
}
for (size_t i = 0; i < 1000000; i++) {
a[0] += (FLOAT)0.001f;
for (size_t j = 1; j < countof(a); j++) {
a[j] += a[j-1] * (FLOAT)0.00001f;
}
}
*val = a[countof(a) - 1];
return 1;
}
#if ARCH_ARM && !ARM_ISA_ARMV7M
static void arm_float_instruction_trap_test(void) {
printf("testing fpu trap\n");
#if !ARM_ONLY_THUMB
float_vfp_arm_instruction_test();
float_neon_arm_instruction_test();
#endif
float_vfp_thumb_instruction_test();
float_neon_thumb_instruction_test();
printf("if we got here, we probably decoded everything properly\n");
}
#endif
static void float_test(void) {
/* test lazy fpu load on separate thread */
thread_t *t[8];
volatile FLOAT val[countof(t)];
const uint32_t test_results_32[8] = {
0x473aced4,
0x4788973e,
0x47b3c703,
0x47def6ab,
0x48051399,
0x481aaab3,
0x48304325,
0x4845da0c,
};
const uint64_t test_results_64[8] = {
0x40e7570fc8092db9,
0x40f1117b2a41e1dc,
0x40f6776e707f2b8a,
0x40fbdd61b6bc75cf,
0x4100a1aa7e7cdfa2,
0x410354a4219b8561,
0x4106079dc4ba29ff,
0x4108ba9767d8cf09,
};
printf("creating %zu floating point threads\n", countof(t));
for (uint i = 0; i < countof(t); i++) {
val[i] = i;
char name[32];
snprintf(name, sizeof(name), "float %u", i);
t[i] = thread_create(name, &float_thread, (void *)&val[i], LOW_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(t[i]);
}
int res;
for (uint i = 0; i < countof(t); i++) {
thread_join(t[i], &res, INFINITE_TIME);
if (sizeof(FLOAT) == 4) {
float result = val[i];
uint32_t result_u32;
memcpy(&result_u32, &result, sizeof(result_u32));
printf("float thread %u returns %d, hex val %a, uint32 %#" PRIx32, i, res, (double)result, result_u32);
if (result_u32 != test_results_32[i]) {
printf("\nfloat thread %u failed, expected %#" PRIx32 "\n", i, test_results_32[i]);
} else {
printf(" (ok)\n");
}
} else {
double result = val[i];
uint64_t result_u64;
memcpy(&result_u64, &result, sizeof(result_u64));
printf("float thread %u returns %d, hex val %a, uint64 %#" PRIx64, i, res, result, result_u64);
if (result_u64 != test_results_64[i]) {
printf("\nfloat thread %u failed, expected %#" PRIx64 "\n", i, test_results_64[i]);
} else {
printf(" (ok)\n");
}
//hexdump8(&result, 8);
}
}
}
static int float_tests(int argc, const console_cmd_args *argv) {
printf("floating point test:\n");
float_test();
#if ARCH_ARM && !ARM_ISA_ARMV7M
/* test all the instruction traps */
arm_float_instruction_trap_test();
#endif
return 0;
}
STATIC_COMMAND_START
STATIC_COMMAND("float_tests", "floating point test", &float_tests)
STATIC_COMMAND_END(float_tests);
#endif // ARM_WITH_VFP || ARCH_ARM64