640 lines
22 KiB
C++
640 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2020 Travis Geiselbrecht
|
|
*
|
|
* Use of this source code is governed by a MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT
|
|
*/
|
|
#if RISCV_MMU
|
|
|
|
#include "arch/riscv/mmu.h"
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <lk/debug.h>
|
|
#include <lk/err.h>
|
|
#include <lk/trace.h>
|
|
#include <arch/ops.h>
|
|
#include <arch/mmu.h>
|
|
#include <arch/riscv.h>
|
|
#include <arch/riscv/csr.h>
|
|
#include <arch/riscv/sbi.h>
|
|
#include <kernel/vm.h>
|
|
|
|
#include "riscv_priv.h"
|
|
|
|
#define LOCAL_TRACE 0
|
|
|
|
#include <kernel/vm.h>
|
|
|
|
#if __riscv_xlen == 32
|
|
#error "32 bit mmu not supported yet"
|
|
#endif
|
|
|
|
// global, generally referenced in start.S
|
|
|
|
// the one main kernel top page table, used by the kernel address space
|
|
// when no user space is active. bottom user space parts are empty.
|
|
riscv_pte_t kernel_pgtable[512] __ALIGNED(PAGE_SIZE);
|
|
paddr_t kernel_pgtable_phys; // filled in by start.S
|
|
|
|
// trampoline top level page table is like the kernel page table but additionally
|
|
// holds an identity map of the bottom RISCV_MMU_PHYSMAP_SIZE bytes of ram.
|
|
// used at early bootup and when starting secondary processors.
|
|
riscv_pte_t trampoline_pgtable[512] __ALIGNED(PAGE_SIZE);
|
|
paddr_t trampoline_pgtable_phys; // filled in by start.S
|
|
|
|
// pre-allocate kernel 2nd level page tables.
|
|
// this makes it very easy to keep user space top level address space page tables
|
|
// in sync, since they can simply take a copy of the kernel ones.
|
|
riscv_pte_t kernel_l2_pgtable[512][RISCV_MMU_KERNEL_PT_ENTRIES] __ALIGNED(PAGE_SIZE);
|
|
paddr_t kernel_l2_pgtable_phys; // filled in by start.S
|
|
|
|
// initial memory mappings. VM uses to construct mappings after the fact
|
|
struct mmu_initial_mapping mmu_initial_mappings[] = {
|
|
// all of memory, mapped in start.S
|
|
{
|
|
.phys = 0,
|
|
.virt = RISCV_MMU_PHYSMAP_BASE_VIRT,
|
|
.size = RISCV_MMU_PHYSMAP_SIZE,
|
|
.flags = 0,
|
|
.name = "memory"
|
|
},
|
|
|
|
// null entry to terminate the list
|
|
{ }
|
|
};
|
|
|
|
namespace {
|
|
|
|
// local state
|
|
ulong riscv_asid_mask;
|
|
arch_aspace_t *kernel_aspace;
|
|
|
|
// given a va address and the level, compute the index in the current PT
|
|
constexpr uint vaddr_to_index(vaddr_t va, uint level) {
|
|
// levels count down from PT_LEVELS - 1
|
|
DEBUG_ASSERT(level < RISCV_MMU_PT_LEVELS);
|
|
|
|
// canonicalize the address
|
|
va &= RISCV_MMU_CANONICAL_MASK;
|
|
|
|
uint index = ((va >> PAGE_SIZE_SHIFT) >> (level * RISCV_MMU_PT_SHIFT)) & (RISCV_MMU_PT_ENTRIES - 1);
|
|
LTRACEF_LEVEL(3, "canonical va %#lx, level %u = index %#x\n", va, level, index);
|
|
|
|
return index;
|
|
}
|
|
|
|
uintptr_t constexpr page_size_per_level(uint level) {
|
|
// levels count down from PT_LEVELS - 1
|
|
DEBUG_ASSERT(level < RISCV_MMU_PT_LEVELS);
|
|
|
|
return 1UL << (PAGE_SIZE_SHIFT + level * RISCV_MMU_PT_SHIFT);
|
|
}
|
|
|
|
uintptr_t constexpr page_mask_per_level(uint level) {
|
|
return page_size_per_level(level) - 1;
|
|
}
|
|
|
|
// compute the starting and stopping index of the kernel aspace
|
|
constexpr uint kernel_start_index = vaddr_to_index(KERNEL_ASPACE_BASE, RISCV_MMU_PT_LEVELS - 1);
|
|
constexpr uint kernel_end_index = vaddr_to_index(KERNEL_ASPACE_BASE + KERNEL_ASPACE_SIZE - 1UL, RISCV_MMU_PT_LEVELS - 1);
|
|
|
|
static_assert(kernel_end_index >= kernel_start_index && kernel_end_index < RISCV_MMU_PT_ENTRIES, "");
|
|
static_assert(kernel_end_index - kernel_start_index + 1 == RISCV_MMU_KERNEL_PT_ENTRIES, "");
|
|
|
|
void riscv_set_satp(uint asid, paddr_t pt) {
|
|
ulong satp;
|
|
|
|
#if RISCV_MMU == 48
|
|
satp = RISCV_SATP_MODE_SV48 << RISCV_SATP_MODE_SHIFT;
|
|
#elif RISCV_MMU == 39
|
|
satp = RISCV_SATP_MODE_SV39 << RISCV_SATP_MODE_SHIFT;
|
|
#endif
|
|
|
|
// make sure the asid is in range
|
|
DEBUG_ASSERT_MSG((asid & riscv_asid_mask) == asid, "asid %#x mask %#x\n", asid, riscv_asid_mask);
|
|
satp |= (ulong)asid << RISCV_SATP_ASID_SHIFT;
|
|
|
|
// make sure the page table is aligned
|
|
DEBUG_ASSERT(IS_PAGE_ALIGNED(pt));
|
|
satp |= pt >> PAGE_SIZE_SHIFT;
|
|
|
|
riscv_csr_write(RISCV_CSR_SATP, satp);
|
|
|
|
// TODO: TLB flush here or use asid properly
|
|
asm("sfence.vma zero, zero");
|
|
}
|
|
|
|
void riscv_tlb_flush_vma_range(vaddr_t base, size_t count) {
|
|
if (count == 0)
|
|
return;
|
|
|
|
// Use SBI to shoot down a range of vaddrs on all the cpus
|
|
ulong hart_mask = -1; // TODO: be more selective about the cpus
|
|
sbi_rfence_vma(&hart_mask, base, count * PAGE_SIZE);
|
|
|
|
// locally shoot down
|
|
// XXX: is this needed or does the sbi call do it if included in the local hart mask?
|
|
while (count > 0) {
|
|
asm volatile("sfence.vma %0, zero" :: "r"(base));
|
|
base += PAGE_SIZE;
|
|
count--;
|
|
}
|
|
}
|
|
|
|
void riscv_tlb_flush_global() {
|
|
// Use SBI to do a global TLB shoot down on all cpus
|
|
ulong hart_mask = -1; // TODO: be more selective about the cpus
|
|
sbi_rfence_vma(&hart_mask, 0, -1);
|
|
}
|
|
|
|
volatile riscv_pte_t *alloc_ptable(arch_aspace_t *aspace, addr_t *pa) {
|
|
// grab a page from the pmm
|
|
vm_page_t *p = pmm_alloc_page();
|
|
if (!p) {
|
|
return NULL;
|
|
}
|
|
|
|
// get the physical and virtual mappings of the page
|
|
*pa = vm_page_to_paddr(p);
|
|
riscv_pte_t *pte = (riscv_pte_t *)paddr_to_kvaddr(*pa);
|
|
|
|
// zero it out
|
|
memset(pte, 0, PAGE_SIZE);
|
|
|
|
smp_wmb();
|
|
|
|
// add it to the aspace list
|
|
list_add_head(&aspace->pt_list, &p->node);
|
|
|
|
LTRACEF_LEVEL(3, "returning pa %#lx, va %p\n", *pa, pte);
|
|
return pte;
|
|
}
|
|
|
|
riscv_pte_t mmu_flags_to_pte(uint flags) {
|
|
riscv_pte_t pte = 0;
|
|
|
|
pte |= (flags & ARCH_MMU_FLAG_PERM_USER) ? RISCV_PTE_U : 0;
|
|
pte |= (flags & ARCH_MMU_FLAG_PERM_RO) ? RISCV_PTE_R : (RISCV_PTE_R | RISCV_PTE_W);
|
|
pte |= (flags & ARCH_MMU_FLAG_PERM_NO_EXECUTE) ? 0 : RISCV_PTE_X;
|
|
|
|
return pte;
|
|
}
|
|
|
|
uint pte_flags_to_mmu_flags(riscv_pte_t pte) {
|
|
uint f = 0;
|
|
if ((pte & (RISCV_PTE_R | RISCV_PTE_W)) == RISCV_PTE_R) {
|
|
f |= ARCH_MMU_FLAG_PERM_RO;
|
|
}
|
|
f |= (pte & RISCV_PTE_X) ? 0 : ARCH_MMU_FLAG_PERM_NO_EXECUTE;
|
|
f |= (pte & RISCV_PTE_U) ? ARCH_MMU_FLAG_PERM_USER : 0;
|
|
return f;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// public api
|
|
|
|
// initialize per address space
|
|
status_t arch_mmu_init_aspace(arch_aspace_t *aspace, vaddr_t base, size_t size, uint flags) {
|
|
LTRACEF("aspace %p, base %#lx, size %#zx, flags %#x\n", aspace, base, size, flags);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
DEBUG_ASSERT(aspace->magic != RISCV_ASPACE_MAGIC);
|
|
|
|
// validate that the base + size is sane and doesn't wrap
|
|
DEBUG_ASSERT(size > PAGE_SIZE);
|
|
DEBUG_ASSERT(base + size - 1 > base);
|
|
|
|
aspace->magic = RISCV_ASPACE_MAGIC;
|
|
aspace->flags = flags;
|
|
list_initialize(&aspace->pt_list);
|
|
if (flags & ARCH_ASPACE_FLAG_KERNEL) {
|
|
// kernel aspace is special and should be constructed once
|
|
DEBUG_ASSERT(base == KERNEL_ASPACE_BASE);
|
|
DEBUG_ASSERT(size == KERNEL_ASPACE_SIZE);
|
|
DEBUG_ASSERT(!kernel_aspace);
|
|
|
|
aspace->base = base;
|
|
aspace->size = size;
|
|
aspace->pt_virt = kernel_pgtable;
|
|
aspace->pt_phys = kernel_pgtable_phys;
|
|
kernel_aspace = aspace;
|
|
|
|
// TODO: allocate and attach kernel page tables here instead of prealloced
|
|
} else {
|
|
// at the moment can only deal with user aspaces that perfectly
|
|
// cover the predefined range
|
|
DEBUG_ASSERT(base == USER_ASPACE_BASE);
|
|
DEBUG_ASSERT(size == USER_ASPACE_SIZE);
|
|
|
|
aspace->base = base;
|
|
aspace->size = size;
|
|
|
|
// allocate a top level page table
|
|
aspace->pt_virt = alloc_ptable(aspace, &aspace->pt_phys);
|
|
if (!aspace->pt_virt) {
|
|
aspace->magic = 0; // not a properly constructed aspace
|
|
return ERR_NO_MEMORY;
|
|
}
|
|
|
|
// copy the top part of the top page table from the kernel's
|
|
for (auto i = kernel_start_index; i <= kernel_end_index; i++) {
|
|
aspace->pt_virt[i] = kernel_pgtable[i];
|
|
}
|
|
smp_wmb();
|
|
}
|
|
|
|
LTRACEF("pt phys %#lx, pt virt %p\n", aspace->pt_phys, aspace->pt_virt);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t arch_mmu_destroy_aspace(arch_aspace_t *aspace) {
|
|
LTRACEF("aspace %p\n", aspace);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
DEBUG_ASSERT(aspace->magic == RISCV_ASPACE_MAGIC);
|
|
|
|
if (aspace->flags & ARCH_ASPACE_FLAG_KERNEL) {
|
|
panic("trying to destroy kernel aspace\n");
|
|
} else {
|
|
// TODO: assert that it's not active
|
|
// TODO: shoot down the ASID
|
|
|
|
// mass free all of the page tables in the aspace
|
|
DEBUG_ASSERT(!list_is_empty(&aspace->pt_list)); // should be at least one page
|
|
LTRACEF("freeing %zu page tables\n", list_length(&aspace->pt_list));
|
|
pmm_free(&aspace->pt_list);
|
|
|
|
// free the top level page table
|
|
aspace->pt_virt = nullptr;
|
|
aspace->pt_phys = 0;
|
|
}
|
|
|
|
aspace->magic = 0;
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum class walk_cb_ret_op {
|
|
HALT,
|
|
RESTART,
|
|
ALLOC_PT
|
|
};
|
|
|
|
struct walk_cb_ret {
|
|
static walk_cb_ret OpHalt(int err) { return { walk_cb_ret_op::HALT, err, false, 0, false }; }
|
|
static walk_cb_ret OpRestart() { return { walk_cb_ret_op::RESTART, NO_ERROR, false, 0, false }; }
|
|
static walk_cb_ret OpCommitHalt(riscv_pte_t pte, bool unmap, int err) { return { walk_cb_ret_op::HALT, err, true, pte, unmap }; }
|
|
static walk_cb_ret OpCommitRestart(riscv_pte_t pte, bool unmap) { return { walk_cb_ret_op::RESTART, NO_ERROR, true, pte, unmap }; }
|
|
static walk_cb_ret OpAllocPT() { return { walk_cb_ret_op::ALLOC_PT, 0, false, 0, false }; }
|
|
|
|
// overall continuation op
|
|
walk_cb_ret_op op;
|
|
|
|
// if halting, return error
|
|
int err;
|
|
|
|
// commit the pte entry
|
|
bool commit;
|
|
riscv_pte_t new_pte;
|
|
bool unmap; // we are unmapping, so test for empty page tables
|
|
};
|
|
|
|
|
|
// in the callback arg, define a function or lambda that matches this signature
|
|
using page_walk_cb = walk_cb_ret(*)(uint level, uint index, riscv_pte_t pte, vaddr_t *vaddr);
|
|
|
|
// generic walker routine to automate drilling through a page table structure
|
|
template <typename F>
|
|
int riscv_pt_walk(arch_aspace_t *aspace, vaddr_t vaddr, F callback) {
|
|
LTRACEF("vaddr %#lx\n", vaddr);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
|
|
restart:
|
|
// bootstrap the top level walk
|
|
uint level = RISCV_MMU_PT_LEVELS - 1;
|
|
uint index = vaddr_to_index(vaddr, level);
|
|
volatile riscv_pte_t *ptep = aspace->pt_virt + index;
|
|
|
|
for (;;) {
|
|
LTRACEF_LEVEL(2, "level %u, index %u, pte %p (%#lx) va %#lx\n",
|
|
level, index, ptep, *ptep, vaddr);
|
|
|
|
// look at our page table entry
|
|
riscv_pte_t pte = *ptep;
|
|
if ((pte & RISCV_PTE_V) && !(pte & RISCV_PTE_PERM_MASK)) {
|
|
// next level page table pointer (RWX = 0)
|
|
paddr_t ptp = RISCV_PTE_PPN(pte);
|
|
volatile riscv_pte_t *ptv = (riscv_pte_t *)paddr_to_kvaddr(ptp);
|
|
|
|
LTRACEF_LEVEL(2, "next level page table at %p, pa %#lx\n", ptv, ptp);
|
|
|
|
// go one level deeper
|
|
level--;
|
|
index = vaddr_to_index(vaddr, level);
|
|
ptep = ptv + index;
|
|
} else {
|
|
// it's a non valid page entry or a valid terminal entry
|
|
// call the callback, seeing what the user wants
|
|
auto ret = callback(level, index, pte, &vaddr);
|
|
switch (ret.op) {
|
|
case walk_cb_ret_op::HALT:
|
|
case walk_cb_ret_op::RESTART:
|
|
// see if we're being asked to commit a change
|
|
if (ret.commit) {
|
|
// commit the change
|
|
*ptep = ret.new_pte;
|
|
if (ret.unmap) {
|
|
// TODO: this was an unmap, test to see if we have emptied a page table
|
|
}
|
|
}
|
|
|
|
if (ret.op == walk_cb_ret_op::HALT) {
|
|
// stop here
|
|
return ret.err;
|
|
} else { // RESTART
|
|
// user should have modified vaddr or we'll probably be in a loop
|
|
goto restart;
|
|
}
|
|
case walk_cb_ret_op::ALLOC_PT:
|
|
// user wants us to add a page table and continue
|
|
paddr_t ptp;
|
|
volatile riscv_pte_t *ptv = alloc_ptable(aspace, &ptp);
|
|
if (!ptv) {
|
|
return ERR_NO_MEMORY;
|
|
}
|
|
|
|
LTRACEF_LEVEL(2, "new ptable table %p, pa %#lx\n", ptv, ptp);
|
|
|
|
// link it in. RMW == 0 is a page table link
|
|
pte = RISCV_PTE_PPN_TO_PTE(ptp) | RISCV_PTE_V;
|
|
*ptep = pte;
|
|
|
|
// go one level deeper
|
|
level--;
|
|
index = vaddr_to_index(vaddr, level);
|
|
ptep = ptv + index;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// make sure we didn't decrement level one too many
|
|
DEBUG_ASSERT(level < RISCV_MMU_PT_LEVELS);
|
|
}
|
|
// unreachable
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// routines to map/unmap/query mappings per address space
|
|
int arch_mmu_map(arch_aspace_t *aspace, const vaddr_t _vaddr, paddr_t paddr, uint count, const uint flags) {
|
|
LTRACEF("vaddr %#lx paddr %#lx count %u flags %#x\n", _vaddr, paddr, count, flags);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
DEBUG_ASSERT(aspace->magic == RISCV_ASPACE_MAGIC);
|
|
|
|
if (count == 0) {
|
|
return NO_ERROR;
|
|
}
|
|
// trim the vaddr to the aspace
|
|
if (_vaddr < aspace->base || _vaddr > aspace->base + aspace->size - 1) {
|
|
return ERR_OUT_OF_RANGE;
|
|
}
|
|
// TODO: make sure _vaddr + count * PAGE_SIZE is within the address space
|
|
|
|
// construct a local callback for the walker routine that
|
|
// a) tells the walker to build a page table if it's not present
|
|
// b) fills in a terminal page table entry with a page and tells the walker to start over
|
|
auto map_cb = [&paddr, &count, aspace, flags](uint level, uint index, riscv_pte_t pte, vaddr_t *vaddr) -> walk_cb_ret {
|
|
LTRACEF("level %u, index %u, pte %#lx, vaddr %#lx [paddr %#lx count %u flags %#x]\n",
|
|
level, index, pte, *vaddr, paddr, count, flags);
|
|
|
|
if ((pte & RISCV_PTE_V)) {
|
|
// we have hit a valid pte of some kind
|
|
// assert that it's not a page table pointer, which we shouldn't be hitting in the callback
|
|
DEBUG_ASSERT(pte & RISCV_PTE_PERM_MASK);
|
|
|
|
// for now, panic
|
|
if (level > 0) {
|
|
PANIC_UNIMPLEMENTED_MSG("terminal large page entry");
|
|
} else {
|
|
PANIC_UNIMPLEMENTED_MSG("terminal page entry");
|
|
}
|
|
|
|
return walk_cb_ret::OpHalt(ERR_ALREADY_EXISTS);
|
|
}
|
|
|
|
// hit an open pate table entry
|
|
if (level > 0) {
|
|
// level is > 0, allocate a page table here
|
|
// TODO: optimize by allocating large page here if possible
|
|
return walk_cb_ret::OpAllocPT();
|
|
}
|
|
|
|
// adding a terminal page at level 0
|
|
riscv_pte_t temp_pte = RISCV_PTE_PPN_TO_PTE(paddr);
|
|
temp_pte |= mmu_flags_to_pte(flags);
|
|
temp_pte |= RISCV_PTE_A | RISCV_PTE_D | RISCV_PTE_V;
|
|
temp_pte |= (aspace->flags & ARCH_ASPACE_FLAG_KERNEL) ? RISCV_PTE_G : 0;
|
|
|
|
LTRACEF_LEVEL(2, "added new terminal entry: pte %#lx\n", temp_pte);
|
|
|
|
// modify what the walker handed us
|
|
*vaddr += PAGE_SIZE;
|
|
|
|
// bump our state forward
|
|
paddr += PAGE_SIZE;
|
|
count--;
|
|
|
|
// if we're done, tell the caller to commit our changes and either restart the walk or halt
|
|
if (count == 0) {
|
|
return walk_cb_ret::OpCommitHalt(temp_pte, false, NO_ERROR);
|
|
} else {
|
|
return walk_cb_ret::OpCommitRestart(temp_pte, false);
|
|
}
|
|
};
|
|
|
|
return riscv_pt_walk(aspace, _vaddr, map_cb);
|
|
}
|
|
|
|
status_t arch_mmu_query(arch_aspace_t *aspace, const vaddr_t _vaddr, paddr_t *paddr, uint *flags) {
|
|
LTRACEF("aspace %p, vaddr %#lx\n", aspace, _vaddr);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
DEBUG_ASSERT(aspace->magic == RISCV_ASPACE_MAGIC);
|
|
|
|
// trim the vaddr to the aspace
|
|
if (_vaddr < aspace->base || _vaddr > aspace->base + aspace->size - 1) {
|
|
return ERR_OUT_OF_RANGE;
|
|
}
|
|
|
|
// construct a local callback for the walker routine that
|
|
// a) if it hits a terminal entry construct the flags we want and halt
|
|
// b) all other cases just halt and return ERR_NOT_FOUND
|
|
auto query_cb = [paddr, flags](uint level, uint index, riscv_pte_t pte, vaddr_t *vaddr) -> walk_cb_ret {
|
|
LTRACEF("level %u, index %u, pte %#lx, vaddr %#lx\n", level, index, pte, *vaddr);
|
|
|
|
if (pte & RISCV_PTE_V) {
|
|
// we have hit a valid pte of some kind
|
|
// assert that it's not a page table pointer, which we shouldn't be hitting in the callback
|
|
DEBUG_ASSERT(pte & RISCV_PTE_PERM_MASK);
|
|
|
|
if (paddr) {
|
|
// extract the ppn
|
|
paddr_t pa = RISCV_PTE_PPN(pte);
|
|
uintptr_t page_mask = page_mask_per_level(level);
|
|
|
|
// add the va offset into the physical address
|
|
*paddr = pa | (*vaddr & page_mask);
|
|
LTRACEF_LEVEL(3, "raw pa %#lx, page_mask %#lx, final pa %#lx\n", pa, page_mask, *paddr);
|
|
}
|
|
|
|
if (flags) {
|
|
// compute the flags
|
|
*flags = pte_flags_to_mmu_flags(pte);
|
|
LTRACEF_LEVEL(3, "computed flags %#x\n", *flags);
|
|
}
|
|
// we found our page, so stop
|
|
return walk_cb_ret::OpHalt(NO_ERROR);
|
|
} else {
|
|
// couldnt find our page, stop
|
|
return walk_cb_ret::OpHalt(ERR_NOT_FOUND);
|
|
}
|
|
};
|
|
|
|
return riscv_pt_walk(aspace, _vaddr, query_cb);
|
|
}
|
|
|
|
int arch_mmu_unmap(arch_aspace_t *aspace, const vaddr_t _vaddr, const uint _count) {
|
|
LTRACEF("vaddr %#lx count %u\n", _vaddr, _count);
|
|
|
|
DEBUG_ASSERT(aspace);
|
|
DEBUG_ASSERT(aspace->magic == RISCV_ASPACE_MAGIC);
|
|
|
|
if (_count == 0) {
|
|
return NO_ERROR;
|
|
}
|
|
// trim the vaddr to the aspace
|
|
if (_vaddr < aspace->base || _vaddr > aspace->base + aspace->size - 1) {
|
|
return ERR_OUT_OF_RANGE;
|
|
}
|
|
// TODO: make sure _vaddr + count * PAGE_SIZE is within the address space
|
|
|
|
// construct a local callback for the walker routine that
|
|
// a) if it hits a terminal 4K entry write zeros to it
|
|
// b) if it hits an empty spot continue
|
|
auto count = _count;
|
|
auto unmap_cb = [&count]
|
|
(uint level, uint index, riscv_pte_t pte, vaddr_t *vaddr) -> walk_cb_ret {
|
|
LTRACEF("level %u, index %u, pte %#lx, vaddr %#lx\n", level, index, pte, *vaddr);
|
|
|
|
if (pte & RISCV_PTE_V) {
|
|
// we have hit a valid pte of some kind
|
|
// assert that it's not a page table pointer, which we shouldn't be hitting in the callback
|
|
DEBUG_ASSERT(pte & RISCV_PTE_PERM_MASK);
|
|
|
|
if (level > 0) {
|
|
PANIC_UNIMPLEMENTED_MSG("cannot handle unmapping of large page");
|
|
}
|
|
|
|
// zero it out, which should unmap the page
|
|
// TODO: handle freeing upper level page tables
|
|
// make sure we dont free kernel 2nd level pts
|
|
*vaddr += PAGE_SIZE;
|
|
count--;
|
|
if (count == 0) {
|
|
return walk_cb_ret::OpCommitHalt(0, true, NO_ERROR);
|
|
} else {
|
|
return walk_cb_ret::OpCommitRestart(0, true);
|
|
}
|
|
} else {
|
|
// nothing here so skip forward and try the next page
|
|
*vaddr += PAGE_SIZE;
|
|
count--;
|
|
if (count == 0) {
|
|
return walk_cb_ret::OpHalt(NO_ERROR);
|
|
} else {
|
|
return walk_cb_ret::OpRestart();
|
|
}
|
|
}
|
|
};
|
|
|
|
int ret = riscv_pt_walk(aspace, _vaddr, unmap_cb);
|
|
|
|
// TLB shootdown the range we've unmapped
|
|
riscv_tlb_flush_vma_range(_vaddr, _count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// load a new user address space context.
|
|
// aspace argument NULL should load kernel-only context
|
|
void arch_mmu_context_switch(arch_aspace_t *aspace) {
|
|
LTRACEF("aspace %p\n", aspace);
|
|
|
|
DEBUG_ASSERT(!aspace || aspace->magic == RISCV_ASPACE_MAGIC);
|
|
|
|
if (!aspace) {
|
|
// switch to the kernel address space
|
|
riscv_set_satp(0, kernel_aspace->pt_phys);
|
|
} else {
|
|
riscv_set_satp(0, aspace->pt_phys);
|
|
}
|
|
|
|
// TODO: deal with TLB flushes.
|
|
// for now, riscv_set_satp() does a full local TLB dump
|
|
}
|
|
|
|
extern "C"
|
|
void riscv_mmu_init_secondaries() {
|
|
// switch to the proper kernel pgtable, with the trampoline parts unmapped
|
|
riscv_set_satp(0, kernel_pgtable_phys);
|
|
|
|
// set the SUM bit so we can access user space directly (for now)
|
|
riscv_csr_set(RISCV_CSR_XSTATUS, RISCV_CSR_XSTATUS_SUM);
|
|
}
|
|
|
|
// called once on the boot cpu during very early (single threaded) init
|
|
extern "C"
|
|
void riscv_early_mmu_init() {
|
|
// figure out the number of support ASID bits by writing all 1s to
|
|
// the asid field in satp and seeing which ones 'stick'
|
|
auto satp_orig = riscv_csr_read(satp);
|
|
auto satp = satp_orig | (RISCV_SATP_ASID_MASK << RISCV_SATP_ASID_SHIFT);
|
|
riscv_csr_write(satp, satp);
|
|
riscv_asid_mask = (riscv_csr_read(satp) >> RISCV_SATP_ASID_SHIFT) & RISCV_SATP_ASID_MASK;
|
|
riscv_csr_write(satp, satp_orig);
|
|
|
|
// install zeroed page tables to the unused portions of the kernel page tables
|
|
for (auto i = kernel_start_index; i <= kernel_end_index; i++) {
|
|
if ((trampoline_pgtable[i] & RISCV_PTE_V) == 0) {
|
|
trampoline_pgtable[i] = RISCV_PTE_PPN_TO_PTE(kernel_l2_pgtable_phys + (i - kernel_start_index) * PAGE_SIZE) | RISCV_PTE_V;
|
|
}
|
|
}
|
|
|
|
// copy the top parts of the kernel page table from the trampoline page table
|
|
for (auto i = kernel_start_index; i <= kernel_end_index; i++) {
|
|
kernel_pgtable[i] = trampoline_pgtable[i];
|
|
}
|
|
smp_wmb();
|
|
|
|
// switch to the new kernel pagetable
|
|
riscv_mmu_init_secondaries();
|
|
}
|
|
|
|
// called a bit later once on the boot cpu
|
|
extern "C"
|
|
void riscv_mmu_init() {
|
|
printf("RISCV: MMU ASID mask %#lx\n", riscv_asid_mask);
|
|
}
|
|
|
|
|
|
|
|
#endif
|