Replace the body of the MIT license with a reference to the LICENSE file and a URL with the MIT license. Replaces 20 something lines with 3. No functional change.
1265 lines
37 KiB
C
1265 lines
37 KiB
C
/*
|
|
* Copyright (c) 2008-2015 Travis Geiselbrecht
|
|
*
|
|
* Use of this source code is governed by a MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel threading
|
|
*
|
|
* This file is the core kernel threading interface.
|
|
*
|
|
* @defgroup thread Threads
|
|
* @{
|
|
*/
|
|
#include <lk/debug.h>
|
|
#include <assert.h>
|
|
#include <lk/list.h>
|
|
#include <malloc.h>
|
|
#include <string.h>
|
|
#include <printf.h>
|
|
#include <lk/err.h>
|
|
#include <kernel/thread.h>
|
|
#include <kernel/timer.h>
|
|
#include <kernel/debug.h>
|
|
#include <kernel/mp.h>
|
|
#include <platform.h>
|
|
#include <target.h>
|
|
#include <lib/heap.h>
|
|
#if WITH_KERNEL_VM
|
|
#include <kernel/vm.h>
|
|
#endif
|
|
|
|
#if THREAD_STATS
|
|
struct thread_stats thread_stats[SMP_MAX_CPUS];
|
|
#endif
|
|
|
|
#define STACK_DEBUG_BYTE (0x99)
|
|
#define STACK_DEBUG_WORD (0x99999999)
|
|
|
|
#define DEBUG_THREAD_CONTEXT_SWITCH 0
|
|
|
|
/* global thread list */
|
|
static struct list_node thread_list;
|
|
|
|
/* master thread spinlock */
|
|
spin_lock_t thread_lock = SPIN_LOCK_INITIAL_VALUE;
|
|
|
|
/* the run queue */
|
|
static struct list_node run_queue[NUM_PRIORITIES];
|
|
static uint32_t run_queue_bitmap;
|
|
|
|
/* make sure the bitmap is large enough to cover our number of priorities */
|
|
STATIC_ASSERT(NUM_PRIORITIES <= sizeof(run_queue_bitmap) * 8);
|
|
|
|
/* the idle thread(s) (statically allocated) */
|
|
#if WITH_SMP
|
|
static thread_t _idle_threads[SMP_MAX_CPUS];
|
|
#define idle_thread(cpu) (&_idle_threads[cpu])
|
|
#else
|
|
static thread_t _idle_thread;
|
|
#define idle_thread(cpu) (&_idle_thread)
|
|
#endif
|
|
|
|
/* local routines */
|
|
static void thread_resched(void);
|
|
static void idle_thread_routine(void) __NO_RETURN;
|
|
|
|
#if PLATFORM_HAS_DYNAMIC_TIMER
|
|
/* preemption timer */
|
|
static timer_t preempt_timer[SMP_MAX_CPUS];
|
|
#endif
|
|
|
|
/* run queue manipulation */
|
|
static void insert_in_run_queue_head(thread_t *t) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state == THREAD_READY);
|
|
DEBUG_ASSERT(!list_in_list(&t->queue_node));
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
list_add_head(&run_queue[t->priority], &t->queue_node);
|
|
run_queue_bitmap |= (1<<t->priority);
|
|
}
|
|
|
|
static void insert_in_run_queue_tail(thread_t *t) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state == THREAD_READY);
|
|
DEBUG_ASSERT(!list_in_list(&t->queue_node));
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
list_add_tail(&run_queue[t->priority], &t->queue_node);
|
|
run_queue_bitmap |= (1<<t->priority);
|
|
}
|
|
|
|
void init_thread_struct(thread_t *t, const char *name) {
|
|
memset(t, 0, sizeof(thread_t));
|
|
t->magic = THREAD_MAGIC;
|
|
thread_set_pinned_cpu(t, -1);
|
|
strlcpy(t->name, name, sizeof(t->name));
|
|
}
|
|
|
|
/**
|
|
* @brief Create a new thread
|
|
*
|
|
* This function creates a new thread. The thread is initially suspended, so you
|
|
* need to call thread_resume() to execute it.
|
|
*
|
|
* @param name Name of thread
|
|
* @param entry Entry point of thread
|
|
* @param arg Arbitrary argument passed to entry()
|
|
* @param priority Execution priority for the thread.
|
|
* @param stack_size Stack size for the thread.
|
|
*
|
|
* Thread priority is an integer from 0 (lowest) to 31 (highest). Some standard
|
|
* prioritys are defined in <kernel/thread.h>:
|
|
*
|
|
* HIGHEST_PRIORITY
|
|
* DPC_PRIORITY
|
|
* HIGH_PRIORITY
|
|
* DEFAULT_PRIORITY
|
|
* LOW_PRIORITY
|
|
* IDLE_PRIORITY
|
|
* LOWEST_PRIORITY
|
|
*
|
|
* Stack size is typically set to DEFAULT_STACK_SIZE
|
|
*
|
|
* @return Pointer to thread object, or NULL on failure.
|
|
*/
|
|
thread_t *thread_create_etc(thread_t *t, const char *name, thread_start_routine entry, void *arg, int priority, void *stack, size_t stack_size) {
|
|
unsigned int flags = 0;
|
|
|
|
if (!t) {
|
|
t = malloc(sizeof(thread_t));
|
|
if (!t)
|
|
return NULL;
|
|
flags |= THREAD_FLAG_FREE_STRUCT;
|
|
}
|
|
|
|
init_thread_struct(t, name);
|
|
|
|
t->entry = entry;
|
|
t->arg = arg;
|
|
t->priority = priority;
|
|
t->state = THREAD_SUSPENDED;
|
|
t->blocking_wait_queue = NULL;
|
|
t->wait_queue_block_ret = NO_ERROR;
|
|
thread_set_curr_cpu(t, -1);
|
|
|
|
t->retcode = 0;
|
|
wait_queue_init(&t->retcode_wait_queue);
|
|
|
|
#if WITH_KERNEL_VM
|
|
t->aspace = NULL;
|
|
#endif
|
|
|
|
/* create the stack */
|
|
if (!stack) {
|
|
#if THREAD_STACK_BOUNDS_CHECK
|
|
stack_size += THREAD_STACK_PADDING_SIZE;
|
|
flags |= THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK;
|
|
#endif
|
|
t->stack = malloc(stack_size);
|
|
if (!t->stack) {
|
|
if (flags & THREAD_FLAG_FREE_STRUCT)
|
|
free(t);
|
|
return NULL;
|
|
}
|
|
flags |= THREAD_FLAG_FREE_STACK;
|
|
#if THREAD_STACK_BOUNDS_CHECK
|
|
memset(t->stack, STACK_DEBUG_BYTE, THREAD_STACK_PADDING_SIZE);
|
|
#endif
|
|
} else {
|
|
t->stack = stack;
|
|
}
|
|
#if THREAD_STACK_HIGHWATER
|
|
if (flags & THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK) {
|
|
memset(t->stack + THREAD_STACK_PADDING_SIZE, STACK_DEBUG_BYTE,
|
|
stack_size - THREAD_STACK_PADDING_SIZE);
|
|
} else {
|
|
memset(t->stack, STACK_DEBUG_BYTE, stack_size);
|
|
}
|
|
#endif
|
|
|
|
t->stack_size = stack_size;
|
|
|
|
/* save whether or not we need to free the thread struct and/or stack */
|
|
t->flags = flags;
|
|
|
|
/* inheirit thread local storage from the parent */
|
|
thread_t *current_thread = get_current_thread();
|
|
int i;
|
|
for (i=0; i < MAX_TLS_ENTRY; i++)
|
|
t->tls[i] = current_thread->tls[i];
|
|
|
|
/* set up the initial stack frame */
|
|
arch_thread_initialize(t);
|
|
|
|
/* add it to the global thread list */
|
|
THREAD_LOCK(state);
|
|
list_add_head(&thread_list, &t->thread_list_node);
|
|
THREAD_UNLOCK(state);
|
|
|
|
return t;
|
|
}
|
|
|
|
thread_t *thread_create(const char *name, thread_start_routine entry, void *arg, int priority, size_t stack_size) {
|
|
return thread_create_etc(NULL, name, entry, arg, priority, NULL, stack_size);
|
|
}
|
|
|
|
/**
|
|
* @brief Flag a thread as real time
|
|
*
|
|
* @param t Thread to flag
|
|
*
|
|
* @return NO_ERROR on success
|
|
*/
|
|
status_t thread_set_real_time(thread_t *t) {
|
|
if (!t)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
|
|
THREAD_LOCK(state);
|
|
#if PLATFORM_HAS_DYNAMIC_TIMER
|
|
if (t == get_current_thread()) {
|
|
/* if we're currently running, cancel the preemption timer. */
|
|
timer_cancel(&preempt_timer[arch_curr_cpu_num()]);
|
|
}
|
|
#endif
|
|
t->flags |= THREAD_FLAG_REAL_TIME;
|
|
THREAD_UNLOCK(state);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
static bool thread_is_realtime(thread_t *t) {
|
|
return (t->flags & THREAD_FLAG_REAL_TIME) && t->priority > DEFAULT_PRIORITY;
|
|
}
|
|
|
|
static bool thread_is_idle(thread_t *t) {
|
|
return !!(t->flags & THREAD_FLAG_IDLE);
|
|
}
|
|
|
|
static bool thread_is_real_time_or_idle(thread_t *t) {
|
|
return !!(t->flags & (THREAD_FLAG_REAL_TIME | THREAD_FLAG_IDLE));
|
|
}
|
|
|
|
/**
|
|
* @brief Make a suspended thread executable.
|
|
*
|
|
* This function is typically called to start a thread which has just been
|
|
* created with thread_create()
|
|
*
|
|
* @param t Thread to resume
|
|
*
|
|
* @return NO_ERROR on success, ERR_NOT_SUSPENDED if thread was not suspended.
|
|
*/
|
|
status_t thread_resume(thread_t *t) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state != THREAD_DEATH);
|
|
|
|
bool resched = false;
|
|
bool ints_disabled = arch_ints_disabled();
|
|
THREAD_LOCK(state);
|
|
if (t->state == THREAD_SUSPENDED) {
|
|
t->state = THREAD_READY;
|
|
insert_in_run_queue_head(t);
|
|
if (!ints_disabled) /* HACK, don't resced into bootstrap thread before idle thread is set up */
|
|
resched = true;
|
|
}
|
|
|
|
mp_reschedule(MP_CPU_ALL_BUT_LOCAL, 0);
|
|
|
|
THREAD_UNLOCK(state);
|
|
|
|
if (resched)
|
|
thread_yield();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t thread_detach_and_resume(thread_t *t) {
|
|
status_t err;
|
|
err = thread_detach(t);
|
|
if (err < 0)
|
|
return err;
|
|
return thread_resume(t);
|
|
}
|
|
|
|
status_t thread_join(thread_t *t, int *retcode, lk_time_t timeout) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
if (t->flags & THREAD_FLAG_DETACHED) {
|
|
/* the thread is detached, go ahead and exit */
|
|
THREAD_UNLOCK(state);
|
|
return ERR_THREAD_DETACHED;
|
|
}
|
|
|
|
/* wait for the thread to die */
|
|
if (t->state != THREAD_DEATH) {
|
|
status_t err = wait_queue_block(&t->retcode_wait_queue, timeout);
|
|
if (err < 0) {
|
|
THREAD_UNLOCK(state);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state == THREAD_DEATH);
|
|
DEBUG_ASSERT(t->blocking_wait_queue == NULL);
|
|
DEBUG_ASSERT(!list_in_list(&t->queue_node));
|
|
|
|
/* save the return code */
|
|
if (retcode)
|
|
*retcode = t->retcode;
|
|
|
|
/* remove it from the master thread list */
|
|
list_delete(&t->thread_list_node);
|
|
|
|
/* clear the structure's magic */
|
|
t->magic = 0;
|
|
|
|
THREAD_UNLOCK(state);
|
|
|
|
/* free its stack and the thread structure itself */
|
|
if (t->flags & THREAD_FLAG_FREE_STACK && t->stack)
|
|
free(t->stack);
|
|
|
|
if (t->flags & THREAD_FLAG_FREE_STRUCT)
|
|
free(t);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t thread_detach(thread_t *t) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
/* if another thread is blocked inside thread_join() on this thread,
|
|
* wake them up with a specific return code */
|
|
wait_queue_wake_all(&t->retcode_wait_queue, false, ERR_THREAD_DETACHED);
|
|
|
|
/* if it's already dead, then just do what join would have and exit */
|
|
if (t->state == THREAD_DEATH) {
|
|
t->flags &= ~THREAD_FLAG_DETACHED; /* makes sure thread_join continues */
|
|
THREAD_UNLOCK(state);
|
|
return thread_join(t, NULL, 0);
|
|
} else {
|
|
t->flags |= THREAD_FLAG_DETACHED;
|
|
THREAD_UNLOCK(state);
|
|
return NO_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Terminate the current thread
|
|
*
|
|
* Current thread exits with the specified return code.
|
|
*
|
|
* This function does not return.
|
|
*/
|
|
void thread_exit(int retcode) {
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
|
|
DEBUG_ASSERT(!thread_is_idle(current_thread));
|
|
|
|
// dprintf("thread_exit: current %p\n", current_thread);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
/* enter the dead state */
|
|
current_thread->state = THREAD_DEATH;
|
|
current_thread->retcode = retcode;
|
|
|
|
/* if we're detached, then do our teardown here */
|
|
if (current_thread->flags & THREAD_FLAG_DETACHED) {
|
|
/* remove it from the master thread list */
|
|
list_delete(¤t_thread->thread_list_node);
|
|
|
|
/* clear the structure's magic */
|
|
current_thread->magic = 0;
|
|
|
|
/* free its stack and the thread structure itself */
|
|
if (current_thread->flags & THREAD_FLAG_FREE_STACK && current_thread->stack) {
|
|
heap_delayed_free(current_thread->stack);
|
|
|
|
/* make sure its not going to get a bounds check performed on the half-freed stack */
|
|
current_thread->flags &= ~THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK;
|
|
}
|
|
|
|
if (current_thread->flags & THREAD_FLAG_FREE_STRUCT)
|
|
heap_delayed_free(current_thread);
|
|
} else {
|
|
/* signal if anyone is waiting */
|
|
wait_queue_wake_all(¤t_thread->retcode_wait_queue, false, 0);
|
|
}
|
|
|
|
/* reschedule */
|
|
thread_resched();
|
|
|
|
panic("somehow fell through thread_exit()\n");
|
|
}
|
|
|
|
static void idle_thread_routine(void) {
|
|
for (;;)
|
|
arch_idle();
|
|
}
|
|
|
|
static thread_t *get_top_thread(int cpu) {
|
|
thread_t *newthread;
|
|
uint32_t local_run_queue_bitmap = run_queue_bitmap;
|
|
|
|
while (local_run_queue_bitmap) {
|
|
/* find the first (remaining) queue with a thread in it */
|
|
uint next_queue = sizeof(run_queue_bitmap) * 8 - 1 - __builtin_clz(local_run_queue_bitmap);
|
|
|
|
list_for_every_entry(&run_queue[next_queue], newthread, thread_t, queue_node) {
|
|
#if WITH_SMP
|
|
if (newthread->pinned_cpu < 0 || newthread->pinned_cpu == cpu)
|
|
#endif
|
|
{
|
|
list_delete(&newthread->queue_node);
|
|
|
|
if (list_is_empty(&run_queue[next_queue]))
|
|
run_queue_bitmap &= ~(1<<next_queue);
|
|
|
|
return newthread;
|
|
}
|
|
}
|
|
|
|
local_run_queue_bitmap &= ~(1<<next_queue);
|
|
}
|
|
/* no threads to run, select the idle thread for this cpu */
|
|
return idle_thread(cpu);
|
|
}
|
|
|
|
/**
|
|
* @brief Cause another thread to be executed.
|
|
*
|
|
* Internal reschedule routine. The current thread needs to already be in whatever
|
|
* state and queues it needs to be in. This routine simply picks the next thread and
|
|
* switches to it.
|
|
*
|
|
* This is probably not the function you're looking for. See
|
|
* thread_yield() instead.
|
|
*/
|
|
void thread_resched(void) {
|
|
thread_t *oldthread;
|
|
thread_t *newthread;
|
|
|
|
thread_t *current_thread = get_current_thread();
|
|
uint cpu = arch_curr_cpu_num();
|
|
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
DEBUG_ASSERT(current_thread->state != THREAD_RUNNING);
|
|
|
|
THREAD_STATS_INC(reschedules);
|
|
|
|
newthread = get_top_thread(cpu);
|
|
|
|
DEBUG_ASSERT(newthread);
|
|
|
|
newthread->state = THREAD_RUNNING;
|
|
|
|
oldthread = current_thread;
|
|
|
|
if (newthread == oldthread)
|
|
return;
|
|
|
|
/* set up quantum for the new thread if it was consumed */
|
|
if (newthread->remaining_quantum <= 0) {
|
|
newthread->remaining_quantum = 5; // XXX make this smarter
|
|
}
|
|
|
|
/* mark the cpu ownership of the threads */
|
|
thread_set_curr_cpu(oldthread, -1);
|
|
thread_set_curr_cpu(newthread, cpu);
|
|
|
|
#if WITH_SMP
|
|
if (thread_is_idle(newthread)) {
|
|
mp_set_cpu_idle(cpu);
|
|
} else {
|
|
mp_set_cpu_busy(cpu);
|
|
}
|
|
|
|
if (thread_is_realtime(newthread)) {
|
|
mp_set_cpu_realtime(cpu);
|
|
} else {
|
|
mp_set_cpu_non_realtime(cpu);
|
|
}
|
|
#endif
|
|
|
|
#if THREAD_STATS
|
|
THREAD_STATS_INC(context_switches);
|
|
|
|
if (thread_is_idle(oldthread)) {
|
|
lk_bigtime_t now = current_time_hires();
|
|
thread_stats[cpu].idle_time += now - thread_stats[cpu].last_idle_timestamp;
|
|
}
|
|
if (thread_is_idle(newthread)) {
|
|
thread_stats[cpu].last_idle_timestamp = current_time_hires();
|
|
}
|
|
#endif
|
|
|
|
KEVLOG_THREAD_SWITCH(oldthread, newthread);
|
|
|
|
#if PLATFORM_HAS_DYNAMIC_TIMER
|
|
if (thread_is_real_time_or_idle(newthread)) {
|
|
if (!thread_is_real_time_or_idle(oldthread)) {
|
|
/* if we're switching from a non real time to a real time, cancel
|
|
* the preemption timer. */
|
|
#if DEBUG_THREAD_CONTEXT_SWITCH
|
|
dprintf(ALWAYS, "arch_context_switch: stop preempt, cpu %d, old %p (%s), new %p (%s)\n",
|
|
cpu, oldthread, oldthread->name, newthread, newthread->name);
|
|
#endif
|
|
timer_cancel(&preempt_timer[cpu]);
|
|
}
|
|
} else if (thread_is_real_time_or_idle(oldthread)) {
|
|
/* if we're switching from a real time (or idle thread) to a regular one,
|
|
* set up a periodic timer to run our preemption tick. */
|
|
#if DEBUG_THREAD_CONTEXT_SWITCH
|
|
dprintf(ALWAYS, "arch_context_switch: start preempt, cpu %d, old %p (%s), new %p (%s)\n",
|
|
cpu, oldthread, oldthread->name, newthread, newthread->name);
|
|
#endif
|
|
timer_set_periodic(&preempt_timer[cpu], 10, thread_timer_tick, NULL);
|
|
}
|
|
#endif
|
|
|
|
/* set some optional target debug leds */
|
|
target_set_debug_led(0, !thread_is_idle(newthread));
|
|
|
|
/* do the switch */
|
|
set_current_thread(newthread);
|
|
|
|
#if DEBUG_THREAD_CONTEXT_SWITCH
|
|
dprintf(ALWAYS, "arch_context_switch: cpu %d, old %p (%s, pri %d, flags 0x%x), new %p (%s, pri %d, flags 0x%x)\n",
|
|
cpu, oldthread, oldthread->name, oldthread->priority,
|
|
oldthread->flags, newthread, newthread->name,
|
|
newthread->priority, newthread->flags);
|
|
#endif
|
|
|
|
#if THREAD_STACK_BOUNDS_CHECK
|
|
/* check that the old thread has not blown its stack just before pushing its context */
|
|
if (oldthread->flags & THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK) {
|
|
STATIC_ASSERT((THREAD_STACK_PADDING_SIZE % sizeof(uint32_t)) == 0);
|
|
uint32_t *s = (uint32_t *)oldthread->stack;
|
|
for (size_t i = 0; i < THREAD_STACK_PADDING_SIZE / sizeof(uint32_t); i++) {
|
|
if (unlikely(s[i] != STACK_DEBUG_WORD)) {
|
|
/* NOTE: will probably blow the stack harder here, but hopefully enough
|
|
* state exists to at least get some sort of debugging done.
|
|
*/
|
|
panic("stack overrun at %p: thread %p (%s), stack %p\n", &s[i],
|
|
oldthread, oldthread->name, oldthread->stack);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef WITH_LIB_UTHREAD
|
|
uthread_context_switch(oldthread, newthread);
|
|
#endif
|
|
|
|
#if WITH_KERNEL_VM
|
|
/* see if we need to swap mmu context */
|
|
if (newthread->aspace != oldthread->aspace) {
|
|
vmm_context_switch(oldthread->aspace, newthread->aspace);
|
|
}
|
|
#endif
|
|
|
|
/* do the low level context switch */
|
|
arch_context_switch(oldthread, newthread);
|
|
}
|
|
|
|
/**
|
|
* @brief Yield the cpu to another thread
|
|
*
|
|
* This function places the current thread at the end of the run queue
|
|
* and yields the cpu to another waiting thread (if any.)
|
|
*
|
|
* This function will return at some later time. Possibly immediately if
|
|
* no other threads are waiting to execute.
|
|
*/
|
|
void thread_yield(void) {
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
THREAD_STATS_INC(yields);
|
|
|
|
/* we are yielding the cpu, so stick ourselves into the tail of the run queue and reschedule */
|
|
current_thread->state = THREAD_READY;
|
|
current_thread->remaining_quantum = 0;
|
|
if (likely(!thread_is_idle(current_thread))) { /* idle thread doesn't go in the run queue */
|
|
insert_in_run_queue_tail(current_thread);
|
|
}
|
|
thread_resched();
|
|
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
/**
|
|
* @brief Briefly yield cpu to another thread
|
|
*
|
|
* This function is similar to thread_yield(), except that it will
|
|
* restart more quickly.
|
|
*
|
|
* This function places the current thread at the head of the run
|
|
* queue and then yields the cpu to another thread.
|
|
*
|
|
* Exception: If the time slice for this thread has expired, then
|
|
* the thread goes to the end of the run queue.
|
|
*
|
|
* This function will return at some later time. Possibly immediately if
|
|
* no other threads are waiting to execute.
|
|
*/
|
|
void thread_preempt(void) {
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
|
|
|
|
#if THREAD_STATS
|
|
if (!thread_is_idle(current_thread))
|
|
THREAD_STATS_INC(preempts); /* only track when a meaningful preempt happens */
|
|
#endif
|
|
|
|
KEVLOG_THREAD_PREEMPT(current_thread);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
/* we are being preempted, so we get to go back into the front of the run queue if we have quantum left */
|
|
current_thread->state = THREAD_READY;
|
|
if (likely(!thread_is_idle(current_thread))) { /* idle thread doesn't go in the run queue */
|
|
if (current_thread->remaining_quantum > 0)
|
|
insert_in_run_queue_head(current_thread);
|
|
else
|
|
insert_in_run_queue_tail(current_thread); /* if we're out of quantum, go to the tail of the queue */
|
|
}
|
|
thread_resched();
|
|
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
/**
|
|
* @brief Suspend thread until woken.
|
|
*
|
|
* This function schedules another thread to execute. This function does not
|
|
* return until the thread is made runable again by some other module.
|
|
*
|
|
* You probably don't want to call this function directly; it's meant to be called
|
|
* from other modules, such as mutex, which will presumably set the thread's
|
|
* state to blocked and add it to some queue or another.
|
|
*/
|
|
void thread_block(void) {
|
|
__UNUSED thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_BLOCKED);
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
DEBUG_ASSERT(!thread_is_idle(current_thread));
|
|
|
|
/* we are blocking on something. the blocking code should have already stuck us on a queue */
|
|
thread_resched();
|
|
}
|
|
|
|
void thread_unblock(thread_t *t, bool resched) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
DEBUG_ASSERT(!thread_is_idle(t));
|
|
|
|
t->state = THREAD_READY;
|
|
insert_in_run_queue_head(t);
|
|
mp_reschedule(MP_CPU_ALL_BUT_LOCAL, 0);
|
|
if (resched)
|
|
thread_resched();
|
|
}
|
|
|
|
enum handler_return thread_timer_tick(struct timer *t, lk_time_t now, void *arg) {
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
if (thread_is_real_time_or_idle(current_thread))
|
|
return INT_NO_RESCHEDULE;
|
|
|
|
current_thread->remaining_quantum--;
|
|
if (current_thread->remaining_quantum <= 0) {
|
|
return INT_RESCHEDULE;
|
|
} else {
|
|
return INT_NO_RESCHEDULE;
|
|
}
|
|
}
|
|
|
|
/* timer callback to wake up a sleeping thread */
|
|
static enum handler_return thread_sleep_handler(timer_t *timer, lk_time_t now, void *arg) {
|
|
thread_t *t = (thread_t *)arg;
|
|
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(t->state == THREAD_SLEEPING);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
t->state = THREAD_READY;
|
|
insert_in_run_queue_head(t);
|
|
|
|
THREAD_UNLOCK(state);
|
|
|
|
return INT_RESCHEDULE;
|
|
}
|
|
|
|
/**
|
|
* @brief Put thread to sleep; delay specified in ms
|
|
*
|
|
* This function puts the current thread to sleep until the specified
|
|
* delay in ms has expired.
|
|
*
|
|
* Note that this function could sleep for longer than the specified delay if
|
|
* other threads are running. When the timer expires, this thread will
|
|
* be placed at the head of the run queue.
|
|
*/
|
|
void thread_sleep(lk_time_t delay) {
|
|
timer_t timer;
|
|
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
|
|
DEBUG_ASSERT(!thread_is_idle(current_thread));
|
|
|
|
timer_initialize(&timer);
|
|
|
|
THREAD_LOCK(state);
|
|
timer_set_oneshot(&timer, delay, thread_sleep_handler, (void *)current_thread);
|
|
current_thread->state = THREAD_SLEEPING;
|
|
thread_resched();
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize threading system
|
|
*
|
|
* This function is called once, from kmain()
|
|
*/
|
|
void thread_init_early(void) {
|
|
int i;
|
|
|
|
DEBUG_ASSERT(arch_curr_cpu_num() == 0);
|
|
|
|
/* initialize the run queues */
|
|
for (i=0; i < NUM_PRIORITIES; i++)
|
|
list_initialize(&run_queue[i]);
|
|
|
|
/* initialize the thread list */
|
|
list_initialize(&thread_list);
|
|
|
|
/* create a thread to cover the current running state */
|
|
thread_t *t = idle_thread(0);
|
|
init_thread_struct(t, "bootstrap");
|
|
|
|
/* half construct this thread, since we're already running */
|
|
t->priority = HIGHEST_PRIORITY;
|
|
t->state = THREAD_RUNNING;
|
|
t->flags = THREAD_FLAG_DETACHED;
|
|
thread_set_curr_cpu(t, 0);
|
|
thread_set_pinned_cpu(t, 0);
|
|
wait_queue_init(&t->retcode_wait_queue);
|
|
list_add_head(&thread_list, &t->thread_list_node);
|
|
set_current_thread(t);
|
|
}
|
|
|
|
/**
|
|
* @brief Complete thread initialization
|
|
*
|
|
* This function is called once at boot time
|
|
*/
|
|
void thread_init(void) {
|
|
#if PLATFORM_HAS_DYNAMIC_TIMER
|
|
for (uint i = 0; i < SMP_MAX_CPUS; i++) {
|
|
timer_initialize(&preempt_timer[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Change name of current thread
|
|
*/
|
|
void thread_set_name(const char *name) {
|
|
thread_t *current_thread = get_current_thread();
|
|
strlcpy(current_thread->name, name, sizeof(current_thread->name));
|
|
}
|
|
|
|
/**
|
|
* @brief Change priority of current thread
|
|
*
|
|
* See thread_create() for a discussion of priority values.
|
|
*/
|
|
void thread_set_priority(int priority) {
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
if (priority <= IDLE_PRIORITY)
|
|
priority = IDLE_PRIORITY + 1;
|
|
if (priority > HIGHEST_PRIORITY)
|
|
priority = HIGHEST_PRIORITY;
|
|
current_thread->priority = priority;
|
|
|
|
current_thread->state = THREAD_READY;
|
|
insert_in_run_queue_head(current_thread);
|
|
thread_resched();
|
|
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
/**
|
|
* @brief Become an idle thread
|
|
*
|
|
* This function marks the current thread as the idle thread -- the one which
|
|
* executes when there is nothing else to do. This function does not return.
|
|
* This function is called once at boot time.
|
|
*/
|
|
void thread_become_idle(void) {
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
|
|
thread_t *t = get_current_thread();
|
|
|
|
#if WITH_SMP
|
|
char name[16];
|
|
snprintf(name, sizeof(name), "idle %d", arch_curr_cpu_num());
|
|
thread_set_name(name);
|
|
#else
|
|
thread_set_name("idle");
|
|
#endif
|
|
|
|
/* mark ourself as idle */
|
|
t->priority = IDLE_PRIORITY;
|
|
t->flags |= THREAD_FLAG_IDLE;
|
|
thread_set_pinned_cpu(t, arch_curr_cpu_num());
|
|
|
|
mp_set_curr_cpu_active(true);
|
|
mp_set_cpu_idle(arch_curr_cpu_num());
|
|
|
|
/* enable interrupts and start the scheduler */
|
|
arch_enable_ints();
|
|
thread_yield();
|
|
|
|
idle_thread_routine();
|
|
}
|
|
|
|
/* create an idle thread for the cpu we're on, and start scheduling */
|
|
|
|
void thread_secondary_cpu_init_early(void) {
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
|
|
/* construct an idle thread to cover our cpu */
|
|
uint cpu = arch_curr_cpu_num();
|
|
thread_t *t = idle_thread(cpu);
|
|
|
|
char name[16];
|
|
snprintf(name, sizeof(name), "idle %u", cpu);
|
|
init_thread_struct(t, name);
|
|
thread_set_pinned_cpu(t, cpu);
|
|
|
|
/* half construct this thread, since we're already running */
|
|
t->priority = HIGHEST_PRIORITY;
|
|
t->state = THREAD_RUNNING;
|
|
t->flags = THREAD_FLAG_DETACHED | THREAD_FLAG_IDLE;
|
|
thread_set_curr_cpu(t, cpu);
|
|
thread_set_pinned_cpu(t, cpu);
|
|
wait_queue_init(&t->retcode_wait_queue);
|
|
|
|
THREAD_LOCK(state);
|
|
|
|
list_add_head(&thread_list, &t->thread_list_node);
|
|
set_current_thread(t);
|
|
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
void thread_secondary_cpu_entry(void) {
|
|
uint cpu = arch_curr_cpu_num();
|
|
thread_t *t = get_current_thread();
|
|
t->priority = IDLE_PRIORITY;
|
|
|
|
mp_set_curr_cpu_active(true);
|
|
mp_set_cpu_idle(cpu);
|
|
|
|
/* enable interrupts and start the scheduler on this cpu */
|
|
arch_enable_ints();
|
|
thread_yield();
|
|
|
|
idle_thread_routine();
|
|
}
|
|
|
|
static const char *thread_state_to_str(enum thread_state state) {
|
|
switch (state) {
|
|
case THREAD_SUSPENDED:
|
|
return "susp";
|
|
case THREAD_READY:
|
|
return "rdy";
|
|
case THREAD_RUNNING:
|
|
return "run";
|
|
case THREAD_BLOCKED:
|
|
return "blok";
|
|
case THREAD_SLEEPING:
|
|
return "slep";
|
|
case THREAD_DEATH:
|
|
return "deth";
|
|
default:
|
|
return "unkn";
|
|
}
|
|
}
|
|
|
|
static size_t thread_stack_used(thread_t *t) {
|
|
#ifdef THREAD_STACK_HIGHWATER
|
|
uint8_t *stack_base;
|
|
size_t stack_size;
|
|
size_t i;
|
|
|
|
stack_base = t->stack;
|
|
stack_size = t->stack_size;
|
|
|
|
for (i = 0; i < stack_size; i++) {
|
|
if (stack_base[i] != STACK_DEBUG_BYTE)
|
|
break;
|
|
}
|
|
return stack_size - i;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
/**
|
|
* @brief Dump debugging info about the specified thread.
|
|
*/
|
|
void dump_thread(thread_t *t) {
|
|
dprintf(INFO, "dump_thread: t %p (%s)\n", t, t->name);
|
|
#if WITH_SMP
|
|
dprintf(INFO, "\tstate %s, curr_cpu %d, pinned_cpu %d, priority %d, remaining quantum %d\n",
|
|
thread_state_to_str(t->state), t->curr_cpu, t->pinned_cpu, t->priority, t->remaining_quantum);
|
|
#else
|
|
dprintf(INFO, "\tstate %s, priority %d, remaining quantum %d\n",
|
|
thread_state_to_str(t->state), t->priority, t->remaining_quantum);
|
|
#endif
|
|
#ifdef THREAD_STACK_HIGHWATER
|
|
dprintf(INFO, "\tstack %p, stack_size %zd, stack_used %zd\n",
|
|
t->stack, t->stack_size, thread_stack_used(t));
|
|
#else
|
|
dprintf(INFO, "\tstack %p, stack_size %zd\n", t->stack, t->stack_size);
|
|
#endif
|
|
dprintf(INFO, "\tentry %p, arg %p, flags 0x%x\n", t->entry, t->arg, t->flags);
|
|
dprintf(INFO, "\twait queue %p, wait queue ret %d\n", t->blocking_wait_queue, t->wait_queue_block_ret);
|
|
#if WITH_KERNEL_VM
|
|
dprintf(INFO, "\taspace %p\n", t->aspace);
|
|
#endif
|
|
#if (MAX_TLS_ENTRY > 0)
|
|
dprintf(INFO, "\ttls:");
|
|
int i;
|
|
for (i=0; i < MAX_TLS_ENTRY; i++) {
|
|
dprintf(INFO, " 0x%lx", t->tls[i]);
|
|
}
|
|
dprintf(INFO, "\n");
|
|
#endif
|
|
arch_dump_thread(t);
|
|
}
|
|
|
|
/**
|
|
* @brief Dump debugging info about all threads
|
|
*/
|
|
void dump_all_threads(void) {
|
|
thread_t *t;
|
|
|
|
THREAD_LOCK(state);
|
|
list_for_every_entry(&thread_list, t, thread_t, thread_list_node) {
|
|
if (t->magic != THREAD_MAGIC) {
|
|
dprintf(INFO, "bad magic on thread struct %p, aborting.\n", t);
|
|
hexdump(t, sizeof(thread_t));
|
|
break;
|
|
}
|
|
dump_thread(t);
|
|
}
|
|
THREAD_UNLOCK(state);
|
|
}
|
|
|
|
/** @} */
|
|
|
|
|
|
/**
|
|
* @defgroup wait Wait Queue
|
|
* @{
|
|
*/
|
|
void wait_queue_init(wait_queue_t *wait) {
|
|
*wait = (wait_queue_t)WAIT_QUEUE_INITIAL_VALUE(*wait);
|
|
}
|
|
|
|
static enum handler_return wait_queue_timeout_handler(timer_t *timer, lk_time_t now, void *arg) {
|
|
thread_t *thread = (thread_t *)arg;
|
|
|
|
DEBUG_ASSERT(thread->magic == THREAD_MAGIC);
|
|
|
|
spin_lock(&thread_lock);
|
|
|
|
enum handler_return ret = INT_NO_RESCHEDULE;
|
|
if (thread_unblock_from_wait_queue(thread, ERR_TIMED_OUT) >= NO_ERROR) {
|
|
ret = INT_RESCHEDULE;
|
|
}
|
|
|
|
spin_unlock(&thread_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Block until a wait queue is notified.
|
|
*
|
|
* This function puts the current thread at the end of a wait
|
|
* queue and then blocks until some other thread wakes the queue
|
|
* up again.
|
|
*
|
|
* @param wait The wait queue to enter
|
|
* @param timeout The maximum time, in ms, to wait
|
|
*
|
|
* If the timeout is zero, this function returns immediately with
|
|
* ERR_TIMED_OUT. If the timeout is INFINITE_TIME, this function
|
|
* waits indefinitely. Otherwise, this function returns with
|
|
* ERR_TIMED_OUT at the end of the timeout period.
|
|
*
|
|
* @return ERR_TIMED_OUT on timeout, else returns the return
|
|
* value specified when the queue was woken by wait_queue_wake_one().
|
|
*/
|
|
status_t wait_queue_block(wait_queue_t *wait, lk_time_t timeout) {
|
|
timer_t timer;
|
|
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
|
|
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
if (timeout == 0)
|
|
return ERR_TIMED_OUT;
|
|
|
|
list_add_tail(&wait->list, ¤t_thread->queue_node);
|
|
wait->count++;
|
|
current_thread->state = THREAD_BLOCKED;
|
|
current_thread->blocking_wait_queue = wait;
|
|
current_thread->wait_queue_block_ret = NO_ERROR;
|
|
|
|
/* if the timeout is nonzero or noninfinite, set a callback to yank us out of the queue */
|
|
if (timeout != INFINITE_TIME) {
|
|
timer_initialize(&timer);
|
|
timer_set_oneshot(&timer, timeout, wait_queue_timeout_handler, (void *)current_thread);
|
|
}
|
|
|
|
thread_resched();
|
|
|
|
/* we don't really know if the timer fired or not, so it's better safe to try to cancel it */
|
|
if (timeout != INFINITE_TIME) {
|
|
timer_cancel(&timer);
|
|
}
|
|
|
|
return current_thread->wait_queue_block_ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Wake up one thread sleeping on a wait queue
|
|
*
|
|
* This function removes one thread (if any) from the head of the wait queue and
|
|
* makes it executable. The new thread will be placed at the head of the
|
|
* run queue.
|
|
*
|
|
* @param wait The wait queue to wake
|
|
* @param reschedule If true, the newly-woken thread will run immediately.
|
|
* @param wait_queue_error The return value which the new thread will receive
|
|
* from wait_queue_block().
|
|
*
|
|
* @return The number of threads woken (zero or one)
|
|
*/
|
|
int wait_queue_wake_one(wait_queue_t *wait, bool reschedule, status_t wait_queue_error) {
|
|
thread_t *t;
|
|
int ret = 0;
|
|
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
t = list_remove_head_type(&wait->list, thread_t, queue_node);
|
|
if (t) {
|
|
wait->count--;
|
|
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
|
|
t->state = THREAD_READY;
|
|
t->wait_queue_block_ret = wait_queue_error;
|
|
t->blocking_wait_queue = NULL;
|
|
|
|
/* if we're instructed to reschedule, stick the current thread on the head
|
|
* of the run queue first, so that the newly awakened thread gets a chance to run
|
|
* before the current one, but the current one doesn't get unnecessarilly punished.
|
|
*/
|
|
if (reschedule) {
|
|
current_thread->state = THREAD_READY;
|
|
insert_in_run_queue_head(current_thread);
|
|
}
|
|
insert_in_run_queue_head(t);
|
|
mp_reschedule(MP_CPU_ALL_BUT_LOCAL, 0);
|
|
if (reschedule) {
|
|
thread_resched();
|
|
}
|
|
ret = 1;
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Wake all threads sleeping on a wait queue
|
|
*
|
|
* This function removes all threads (if any) from the wait queue and
|
|
* makes them executable. The new threads will be placed at the head of the
|
|
* run queue.
|
|
*
|
|
* @param wait The wait queue to wake
|
|
* @param reschedule If true, the newly-woken threads will run immediately.
|
|
* @param wait_queue_error The return value which the new thread will receive
|
|
* from wait_queue_block().
|
|
*
|
|
* @return The number of threads woken (zero or one)
|
|
*/
|
|
int wait_queue_wake_all(wait_queue_t *wait, bool reschedule, status_t wait_queue_error) {
|
|
thread_t *t;
|
|
int ret = 0;
|
|
|
|
thread_t *current_thread = get_current_thread();
|
|
|
|
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
if (reschedule && wait->count > 0) {
|
|
/* if we're instructed to reschedule, stick the current thread on the head
|
|
* of the run queue first, so that the newly awakened threads get a chance to run
|
|
* before the current one, but the current one doesn't get unnecessarilly punished.
|
|
*/
|
|
current_thread->state = THREAD_READY;
|
|
insert_in_run_queue_head(current_thread);
|
|
}
|
|
|
|
/* pop all the threads off the wait queue into the run queue */
|
|
while ((t = list_remove_head_type(&wait->list, thread_t, queue_node))) {
|
|
wait->count--;
|
|
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
|
|
t->state = THREAD_READY;
|
|
t->wait_queue_block_ret = wait_queue_error;
|
|
t->blocking_wait_queue = NULL;
|
|
|
|
insert_in_run_queue_head(t);
|
|
ret++;
|
|
}
|
|
|
|
DEBUG_ASSERT(wait->count == 0);
|
|
|
|
if (ret > 0) {
|
|
mp_reschedule(MP_CPU_ALL_BUT_LOCAL, 0);
|
|
if (reschedule) {
|
|
thread_resched();
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Free all resources allocated in wait_queue_init()
|
|
*
|
|
* If any threads were waiting on this queue, they are all woken.
|
|
*/
|
|
void wait_queue_destroy(wait_queue_t *wait, bool reschedule) {
|
|
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
wait_queue_wake_all(wait, reschedule, ERR_OBJECT_DESTROYED);
|
|
wait->magic = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Wake a specific thread in a wait queue
|
|
*
|
|
* This function extracts a specific thread from a wait queue, wakes it, and
|
|
* puts it at the head of the run queue.
|
|
*
|
|
* @param t The thread to wake
|
|
* @param wait_queue_error The return value which the new thread will receive
|
|
* from wait_queue_block().
|
|
*
|
|
* @return ERR_NOT_BLOCKED if thread was not in any wait queue.
|
|
*/
|
|
status_t thread_unblock_from_wait_queue(thread_t *t, status_t wait_queue_error) {
|
|
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
|
|
DEBUG_ASSERT(arch_ints_disabled());
|
|
DEBUG_ASSERT(spin_lock_held(&thread_lock));
|
|
|
|
if (t->state != THREAD_BLOCKED)
|
|
return ERR_NOT_BLOCKED;
|
|
|
|
DEBUG_ASSERT(t->blocking_wait_queue != NULL);
|
|
DEBUG_ASSERT(t->blocking_wait_queue->magic == WAIT_QUEUE_MAGIC);
|
|
DEBUG_ASSERT(list_in_list(&t->queue_node));
|
|
|
|
list_delete(&t->queue_node);
|
|
t->blocking_wait_queue->count--;
|
|
t->blocking_wait_queue = NULL;
|
|
t->state = THREAD_READY;
|
|
t->wait_queue_block_ret = wait_queue_error;
|
|
insert_in_run_queue_head(t);
|
|
mp_reschedule(MP_CPU_ALL_BUT_LOCAL, 0);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
#if defined(WITH_DEBUGGER_INFO)
|
|
// This is, by necessity, arch-specific, and arm-m specific right now,
|
|
// but lives here due to thread_list being static.
|
|
//
|
|
// It contains sufficient information for a remote debugger to walk
|
|
// the thread list without needing the symbols and debug sections in
|
|
// the elf binary for lk or the ability to parse them.
|
|
const struct __debugger_info__ {
|
|
u32 version; // flags:16 major:8 minor:8
|
|
void *thread_list_ptr;
|
|
void *current_thread_ptr;
|
|
u8 off_list_node;
|
|
u8 off_state;
|
|
u8 off_saved_sp;
|
|
u8 off_was_preempted;
|
|
u8 off_name;
|
|
u8 off_waitq;
|
|
} _debugger_info = {
|
|
.version = 0x0100,
|
|
.thread_list_ptr = &thread_list,
|
|
.current_thread_ptr = &_current_thread,
|
|
.off_list_node = __builtin_offsetof(thread_t, thread_list_node),
|
|
.off_state = __builtin_offsetof(thread_t, state),
|
|
.off_saved_sp = __builtin_offsetof(thread_t, arch.sp),
|
|
.off_was_preempted = __builtin_offsetof(thread_t, arch.was_preempted),
|
|
.off_name = __builtin_offsetof(thread_t, name),
|
|
.off_waitq = __builtin_offsetof(thread_t, blocking_wait_queue),
|
|
};
|
|
#endif
|