/* * Copyright (c) 2012-2015 Travis Geiselbrecht * * Use of this source code is governed by a MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "platform_p.h" #if ZYNQ_SDRAM_INIT STATIC_ASSERT(SDRAM_SIZE != 0); #endif /* default timeout of the global hardware watchdog */ #ifndef ZYNQ_WATCHDOG_TIMEOUT #define ZYNQ_WATCHDOG_TIMEOUT (1000) // 1 second #endif /* saved REBOOT_STATUS register */ static uint32_t saved_reboot_status; /* target can specify this as the initial jam table to set up the soc */ void ps7_init(void); __WEAK void ps7_init(void) { } /* These should be defined in the target somewhere */ extern const uint32_t zynq_mio_cfg[ZYNQ_MIO_CNT]; extern const long zynq_ddr_cfg[]; extern const uint32_t zynq_ddr_cfg_cnt; extern const zynq_pll_cfg_tree_t zynq_pll_cfg; extern const zynq_clk_cfg_t zynq_clk_cfg; extern const zynq_ddriob_cfg_t zynq_ddriob_cfg; static inline int reg_poll(uint32_t addr,uint32_t mask) { uint32_t iters = UINT_MAX; while (iters-- && !(*REG32(addr) & mask)) ; if (iters) { return 0; } return -1; } /* For each PLL we need to configure the cp / res / lock_cnt and then place the PLL in bypass * before doing a reset to switch to the new values. Then bypass is removed to switch back to using * the PLL once its locked. */ static int zynq_pll_init(void) { const zynq_pll_cfg_tree_t *cfg = &zynq_pll_cfg; SLCR_REG(ARM_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->arm.lock_cnt) | PLL_CFG_PLL_CP(cfg->arm.cp) | PLL_CFG_PLL_RES(cfg->arm.res); SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(cfg->arm.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET; if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_ARM_PLL_LOCK) == -1) { return -1; } SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE; SLCR_REG(ARM_CLK_CTRL) = zynq_clk_cfg.arm_clk; #if ZYNQ_SDRAM_INIT SLCR_REG(DDR_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->ddr.lock_cnt) | PLL_CFG_PLL_CP(cfg->ddr.cp) | PLL_CFG_PLL_RES(cfg->ddr.res); SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(cfg->ddr.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET; if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_DDR_PLL_LOCK) == -1) { return -1; } SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE; SLCR_REG(DDR_CLK_CTRL) = zynq_clk_cfg.ddr_clk; #elif SDRAM_SIZE == 0 /* if we're not using sdram and haven't been told to initialize sdram, stop the DDR pll */ SLCR_REG(DDR_CLK_CTRL) = 0; SLCR_REG(DDR_PLL_CTRL) |= PLL_PWRDOWN; #endif SLCR_REG(IO_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->io.lock_cnt) | PLL_CFG_PLL_CP(cfg->io.cp) | PLL_CFG_PLL_RES(cfg->io.res); SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(cfg->io.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET; if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_IO_PLL_LOCK) == -1) { return -1; } SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE; return 0; } static int zynq_mio_init(void) { /* This DDRIOB configuration applies to both zybo and uzed, but it's possible * it may not work for all boards in the future. Just something to keep in mind * with different memory configurations. */ SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN; for (size_t pin = 0; pin < countof(zynq_mio_cfg); pin++) { if (zynq_mio_cfg[pin] != MIO_DEFAULT) { SLCR_REG(MIO_PIN_00 + (pin * 4)) = zynq_mio_cfg[pin]; } } SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F); return 0; } static void zynq_clk_init(void) { SLCR_REG(DCI_CLK_CTRL) = zynq_clk_cfg.dci_clk; SLCR_REG(GEM0_CLK_CTRL) = zynq_clk_cfg.gem0_clk; SLCR_REG(GEM0_RCLK_CTRL) = zynq_clk_cfg.gem0_rclk; SLCR_REG(GEM1_CLK_CTRL) = zynq_clk_cfg.gem1_clk; SLCR_REG(GEM1_RCLK_CTRL) = zynq_clk_cfg.gem1_rclk; SLCR_REG(SMC_CLK_CTRL) = zynq_clk_cfg.smc_clk; SLCR_REG(LQSPI_CLK_CTRL) = zynq_clk_cfg.lqspi_clk; SLCR_REG(SDIO_CLK_CTRL) = zynq_clk_cfg.sdio_clk; SLCR_REG(UART_CLK_CTRL) = zynq_clk_cfg.uart_clk; SLCR_REG(SPI_CLK_CTRL) = zynq_clk_cfg.spi_clk; SLCR_REG(CAN_CLK_CTRL) = zynq_clk_cfg.can_clk; SLCR_REG(CAN_MIOCLK_CTRL)= zynq_clk_cfg.can_mioclk; SLCR_REG(USB0_CLK_CTRL) = zynq_clk_cfg.usb0_clk; SLCR_REG(USB1_CLK_CTRL) = zynq_clk_cfg.usb1_clk; SLCR_REG(PCAP_CLK_CTRL) = zynq_clk_cfg.pcap_clk; SLCR_REG(FPGA0_CLK_CTRL) = zynq_clk_cfg.fpga0_clk; SLCR_REG(FPGA1_CLK_CTRL) = zynq_clk_cfg.fpga1_clk; SLCR_REG(FPGA2_CLK_CTRL) = zynq_clk_cfg.fpga2_clk; SLCR_REG(FPGA3_CLK_CTRL) = zynq_clk_cfg.fpga3_clk; SLCR_REG(APER_CLK_CTRL) = zynq_clk_cfg.aper_clk; SLCR_REG(CLK_621_TRUE) = zynq_clk_cfg.clk_621_true; } #if ZYNQ_SDRAM_INIT static void zynq_ddr_init(void) { SLCR_REG(DDRIOB_ADDR0) = zynq_ddriob_cfg.addr0; SLCR_REG(DDRIOB_ADDR1) = zynq_ddriob_cfg.addr1; SLCR_REG(DDRIOB_DATA0) = zynq_ddriob_cfg.data0; SLCR_REG(DDRIOB_DATA1) = zynq_ddriob_cfg.data1; SLCR_REG(DDRIOB_DIFF0) = zynq_ddriob_cfg.diff0; SLCR_REG(DDRIOB_DIFF1) = zynq_ddriob_cfg.diff1; SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3); /* These register fields are not documented in the TRM. These * values represent the defaults generated via the Zynq tools */ SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU; SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU; SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU; SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU; SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U; SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U; SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U; SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U; /* Write addresss / value pairs from target table */ for (size_t i = 0; i < zynq_ddr_cfg_cnt; i += 2) { *REG32(zynq_ddr_cfg[i]) = zynq_ddr_cfg[i+1]; } /* Wait for DCI done */ reg_poll((uintptr_t)&SLCR->DDRIOB_DCI_STATUS, 0x2000); /* Bring ddr out of reset and wait until self refresh */ *REG32(DDRC_CTRL) |= DDRC_CTRL_OUT_OF_RESET; reg_poll(DDRC_MODE_STATUS, DDRC_STS_SELF_REFRESH); /* Switch timer to 64k */ *REG32(0XF8007000) = *REG32(0xF8007000) & ~0x20000000U; if (zynq_ddriob_cfg.ibuf_disable) { SLCR_REG(DDRIOB_DATA0) |= DDRIOB_IBUF_DISABLE_MODE; SLCR_REG(DDRIOB_DATA1) |= DDRIOB_IBUF_DISABLE_MODE; SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_IBUF_DISABLE_MODE; SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_IBUF_DISABLE_MODE; } if (zynq_ddriob_cfg.term_disable) { SLCR_REG(DDRIOB_DATA0) |= DDRIOB_TERM_DISABLE_MODE; SLCR_REG(DDRIOB_DATA1) |= DDRIOB_TERM_DISABLE_MODE; SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_TERM_DISABLE_MODE; SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_TERM_DISABLE_MODE; } } #endif STATIC_ASSERT(IS_ALIGNED(SDRAM_BASE, MB)); STATIC_ASSERT(IS_ALIGNED(SDRAM_SIZE, MB)); #if SDRAM_SIZE != 0 /* if we have sdram, the first 1MB is covered by sram */ #define RAM_SIZE (MB + (SDRAM_SIZE - MB)) #else #define RAM_SIZE (MB) #endif /* initial memory mappings. parsed by start.S */ struct mmu_initial_mapping mmu_initial_mappings[] = { /* 1GB of sram + sdram space */ { .phys = SRAM_BASE, .virt = KERNEL_BASE, .size = RAM_SIZE, .flags = 0, .name = "memory" }, /* AXI fpga fabric bus 0 */ { .phys = 0x40000000, .virt = 0x40000000, .size = (128*1024*1024), .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "axi0" }, /* AXI fpga fabric bus 1 */ { .phys = 0x80000000, .virt = 0x80000000, .size = (16*1024*1024), .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "axi1" }, /* 0xe0000000 hardware devices */ { .phys = 0xe0000000, .virt = 0xe0000000, .size = 0x00300000, .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "hw-e0000000" }, /* 0xe1000000 hardware devices */ { .phys = 0xe1000000, .virt = 0xe1000000, .size = 0x05000000, .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "hw-e1000000" }, /* 0xf8000000 hardware devices */ { .phys = 0xf8000000, .virt = 0xf8000000, .size = 0x01000000, .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "hw-f8000000" }, /* 0xfc000000 hardware devices */ { .phys = 0xfc000000, .virt = 0xfc000000, .size = 0x02000000, .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, .name = "hw-fc000000" }, /* sram high aperture */ { .phys = 0xfff00000, .virt = 0xfff00000, .size = 0x00100000, .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE }, /* identity map to let the boot code run */ { .phys = SRAM_BASE, .virt = SRAM_BASE, .size = RAM_SIZE, .flags = MMU_INITIAL_MAPPING_TEMPORARY }, /* null entry to terminate the list */ { 0 } }; #if SDRAM_SIZE != 0 static pmm_arena_t sdram_arena = { .name = "sdram", .base = SDRAM_BASE, .size = SDRAM_SIZE - MB, /* first 1MB is covered by SRAM */ .flags = PMM_ARENA_FLAG_KMAP }; #endif static pmm_arena_t sram_arena = { .name = "sram", .base = SRAM_BASE, .size = SRAM_SIZE, .priority = 1, .flags = PMM_ARENA_FLAG_KMAP }; void platform_init_mmu_mappings(void) { } void platform_early_init(void) { #if 0 ps7_init(); #else /* Unlock the registers and leave them that way */ zynq_slcr_unlock(); zynq_mio_init(); zynq_pll_init(); zynq_clk_init(); #if ZYNQ_SDRAM_INIT zynq_ddr_init(); #endif #endif /* Enable all level shifters */ SLCR_REG(LVL_SHFTR_EN) = 0xF; /* FPGA SW reset (not documented, but mandatory) */ SLCR_REG(FPGA_RST_CTRL) = 0x0; /* zynq manual says this is mandatory for cache init */ *REG32(SLCR_BASE + 0xa1c) = 0x020202; /* save the reboot status register, clear bits we dont want to save */ saved_reboot_status = SLCR->REBOOT_STATUS; SLCR->REBOOT_STATUS &= ~(0xff << 16); /* early initialize the uart so we can printf */ uart_init_early(); /* initialize the interrupt controller */ arm_gic_init(); zynq_gpio_init(); /* initialize the timer block */ arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq()); /* initialize the hardware watchdog */ watchdog_hw_init(ZYNQ_WATCHDOG_TIMEOUT); /* bump the 2nd cpu into our code space and remap the top SRAM block */ if (KERNEL_LOAD_OFFSET != 0) { /* construct a trampoline to get the 2nd cpu up to the trap routine */ /* figure out the offset of the trampoline routine in physical space from address 0 */ extern void platform_reset(void); addr_t tramp = (addr_t)&platform_reset; tramp -= KERNEL_BASE; tramp += MEMBASE; /* stuff in a ldr pc, [nextaddrress], and a target address */ uint32_t *ptr = (uint32_t *)KERNEL_BASE; ptr[0] = 0xe51ff004; // ldr pc, [pc, #-4] ptr[1] = tramp; arch_clean_invalidate_cache_range((addr_t)ptr, 8); } /* reset the 2nd cpu, letting it go through its reset vector (at 0x0 physical) */ SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1 spin(10); SLCR_REG(A9_CPU_RST_CTRL) &= ~(1<<1); // unreset cpu 1 /* wait for the 2nd cpu to reset, go through the usual reset vector, and get trapped by our code */ /* see platform/zynq/reset.S */ extern volatile int __cpu_trapped; uint count = 100000; while (--count) { arch_clean_invalidate_cache_range((addr_t)&__cpu_trapped, sizeof(__cpu_trapped)); if (__cpu_trapped != 0) break; } if (count == 0) { panic("ZYNQ: failed to trap 2nd cpu\n"); } /* bounce the 4th sram region down to lower address */ SLCR_REG(OCM_CFG) &= ~0xf; /* all banks at low address */ /* add the main memory arena */ #if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0 /* In the case of running from SRAM, and we are using SDRAM, * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB), * so intentionally bump the boot-time allocator to start in the base of SDRAM. */ extern uintptr_t boot_alloc_start; extern uintptr_t boot_alloc_end; boot_alloc_start = KERNEL_BASE + MB; boot_alloc_end = KERNEL_BASE + MB; #endif #if SDRAM_SIZE != 0 pmm_add_arena(&sdram_arena); #endif pmm_add_arena(&sram_arena); } void platform_init(void) { uart_init(); /* enable if we want to see some hardware boot status */ #if LK_DEBUGLEVEL > 0 printf("zynq boot status:\n"); printf("\tREBOOT_STATUS 0x%x\n", saved_reboot_status); if (BIT(saved_reboot_status, 16)) printf("\t\tSWDT_RST\n"); if (BIT(saved_reboot_status, 17)) printf("\t\tAWDT0_RST\n"); if (BIT(saved_reboot_status, 18)) printf("\t\tAWDT1_RST\n"); if (BIT(saved_reboot_status, 19)) printf("\t\tSLC_RST\n"); if (BIT(saved_reboot_status, 20)) printf("\t\tDBG_RST\n"); if (BIT(saved_reboot_status, 21)) printf("\t\tSRST_B\n"); if (BIT(saved_reboot_status, 22)) printf("\t\tPOR\n"); printf("\tREBOOT_STATE 0x%lx\n", BITS_SHIFT(saved_reboot_status, 31, 24)); printf("\tboot mode 0x%x\n", zynq_get_boot_mode()); #endif } void platform_quiesce(void) { #if ZYNQ_WITH_GEM_ETH gem_disable(); #endif platform_stop_timer(); /* stop the 2nd cpu and hold in reset */ SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1 } /* called from lkboot to see if we want to abort autobooting. * having the BOOT_MODE pins set to JTAG should cause us to hang out in * whatever binary is loaded at the time. */ bool platform_abort_autoboot(void); bool platform_abort_autoboot(void) { /* test BOOT_MODE pins to see if we want to skip the autoboot stuff */ uint32_t boot_mode = zynq_get_boot_mode(); if (boot_mode == ZYNQ_BOOT_MODE_JTAG) { printf("ZYNQ: disabling autoboot due to JTAG/QSPI jumper being set to JTAG\n"); return true; } return false; } static int cmd_zynq(int argc, const console_cmd_args *argv) { if (argc < 2) { notenoughargs: printf("not enough arguments\n"); usage: printf("usage: %s \n", argv[0].str); printf("\tslcr lock\n"); printf("\tslcr unlock\n"); printf("\tslcr lockstatus\n"); printf("\tmio\n"); printf("\tclocks\n"); printf("\ttrip_watchdog\n"); return -1; } if (!strcmp(argv[1].str, "slcr")) { if (argc < 3) goto notenoughargs; bool print_lock_status = false; if (!strcmp(argv[2].str, "lock")) { zynq_slcr_lock(); print_lock_status = true; } else if (!strcmp(argv[2].str, "unlock")) { zynq_slcr_unlock(); print_lock_status = true; } else if (print_lock_status || !strcmp(argv[2].str, "lockstatus")) { printf("%s\n", (SLCR->SLCR_LOCKSTA & 0x1) ? "locked" : "unlocked"); } else { goto usage; } } else if (!strcmp(argv[1].str, "mio")) { printf("zynq mio:\n"); for (size_t i = 0; i < ZYNQ_MIO_CNT; i++) { printf("\t%02u: 0x%08x", i, *REG32((uintptr_t)&SLCR->MIO_PIN_00 + (i * 4))); if (i % 4 == 3 || i == 53) { putchar('\n'); } } } else if (!strcmp(argv[1].str, "clocks")) { zynq_dump_clocks(); } else if (!strcmp(argv[1].str, "trip_watchdog")) { /* try to trip the watchdog by disabling interrupts for a while */ arch_disable_ints(); for (int i = 0; i < 20; i++) { spin(250000); printf("SWDT MODE 0x%x CONTROL 0x%x STATUS 0x%x\n", SWDT->MODE, SWDT->CONTROL, SWDT->STATUS); } arch_enable_ints(); } else { goto usage; } return 0; } STATIC_COMMAND_START #if LK_DEBUGLEVEL > 1 STATIC_COMMAND("zynq", "zynq configuration commands", &cmd_zynq) #endif STATIC_COMMAND_END(zynq);