[lib] Import some libc/libm functions from BSD.
This commit is contained in:
@@ -39,6 +39,9 @@ long atol(const char *num);
|
||||
unsigned long atoul(const char *num);
|
||||
unsigned long long atoull(const char *num);
|
||||
|
||||
long strtol(const char *nptr, char **endptr, int base);
|
||||
long long strtoll(const char *nptr, char **endptr, int base);
|
||||
|
||||
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
|
||||
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
|
||||
|
||||
|
||||
@@ -9,6 +9,8 @@ MODULE_SRCS += \
|
||||
$(LOCAL_DIR)/errno.c \
|
||||
$(LOCAL_DIR)/printf.c \
|
||||
$(LOCAL_DIR)/rand.c \
|
||||
$(LOCAL_DIR)/strtol.c \
|
||||
$(LOCAL_DIR)/strtoll.c \
|
||||
$(LOCAL_DIR)/stdio.c \
|
||||
$(LOCAL_DIR)/qsort.c \
|
||||
$(LOCAL_DIR)/eabi.c
|
||||
|
||||
140
lib/libc/strtol.c
Normal file
140
lib/libc/strtol.c
Normal file
@@ -0,0 +1,140 @@
|
||||
/* $OpenBSD: strtol.c,v 1.7 2005/08/08 08:05:37 espie Exp $ */
|
||||
/*-
|
||||
* Copyright (c) 1990 The Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <ctype.h>
|
||||
#include <errno.h>
|
||||
#include <limits.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
||||
/*
|
||||
* Convert a string to a long integer.
|
||||
*
|
||||
* Ignores `locale' stuff. Assumes that the upper and lower case
|
||||
* alphabets and digits are each contiguous.
|
||||
*/
|
||||
long
|
||||
strtol(const char *nptr, char **endptr, int base)
|
||||
{
|
||||
const char *s;
|
||||
long acc, cutoff;
|
||||
int c;
|
||||
int neg, any, cutlim;
|
||||
|
||||
/*
|
||||
* Skip white space and pick up leading +/- sign if any.
|
||||
* If base is 0, allow 0x for hex and 0 for octal, else
|
||||
* assume decimal; if base is already 16, allow 0x.
|
||||
*/
|
||||
s = nptr;
|
||||
do {
|
||||
c = (unsigned char) *s++;
|
||||
} while (isspace(c));
|
||||
if (c == '-') {
|
||||
neg = 1;
|
||||
c = *s++;
|
||||
} else {
|
||||
neg = 0;
|
||||
if (c == '+')
|
||||
c = *s++;
|
||||
}
|
||||
if ((base == 0 || base == 16) &&
|
||||
c == '0' && (*s == 'x' || *s == 'X')) {
|
||||
c = s[1];
|
||||
s += 2;
|
||||
base = 16;
|
||||
}
|
||||
if (base == 0)
|
||||
base = c == '0' ? 8 : 10;
|
||||
|
||||
/*
|
||||
* Compute the cutoff value between legal numbers and illegal
|
||||
* numbers. That is the largest legal value, divided by the
|
||||
* base. An input number that is greater than this value, if
|
||||
* followed by a legal input character, is too big. One that
|
||||
* is equal to this value may be valid or not; the limit
|
||||
* between valid and invalid numbers is then based on the last
|
||||
* digit. For instance, if the range for longs is
|
||||
* [-2147483648..2147483647] and the input base is 10,
|
||||
* cutoff will be set to 214748364 and cutlim to either
|
||||
* 7 (neg==0) or 8 (neg==1), meaning that if we have accumulated
|
||||
* a value > 214748364, or equal but the next digit is > 7 (or 8),
|
||||
* the number is too big, and we will return a range error.
|
||||
*
|
||||
* Set any if any `digits' consumed; make it negative to indicate
|
||||
* overflow.
|
||||
*/
|
||||
cutoff = neg ? LONG_MIN : LONG_MAX;
|
||||
cutlim = cutoff % base;
|
||||
cutoff /= base;
|
||||
if (neg) {
|
||||
if (cutlim > 0) {
|
||||
cutlim -= base;
|
||||
cutoff += 1;
|
||||
}
|
||||
cutlim = -cutlim;
|
||||
}
|
||||
for (acc = 0, any = 0;; c = (unsigned char) *s++) {
|
||||
if (isdigit(c))
|
||||
c -= '0';
|
||||
else if (isalpha(c))
|
||||
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
|
||||
else
|
||||
break;
|
||||
if (c >= base)
|
||||
break;
|
||||
if (any < 0)
|
||||
continue;
|
||||
if (neg) {
|
||||
if (acc < cutoff || acc == cutoff && c > cutlim) {
|
||||
any = -1;
|
||||
acc = LONG_MIN;
|
||||
errno = ERANGE;
|
||||
} else {
|
||||
any = 1;
|
||||
acc *= base;
|
||||
acc -= c;
|
||||
}
|
||||
} else {
|
||||
if (acc > cutoff || acc == cutoff && c > cutlim) {
|
||||
any = -1;
|
||||
acc = LONG_MAX;
|
||||
errno = ERANGE;
|
||||
} else {
|
||||
any = 1;
|
||||
acc *= base;
|
||||
acc += c;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (endptr != 0)
|
||||
*endptr = (char *) (any ? s - 1 : nptr);
|
||||
return (acc);
|
||||
}
|
||||
142
lib/libc/strtoll.c
Normal file
142
lib/libc/strtoll.c
Normal file
@@ -0,0 +1,142 @@
|
||||
/* $OpenBSD: strtoll.c,v 1.6 2005/11/10 10:00:17 espie Exp $ */
|
||||
/*-
|
||||
* Copyright (c) 1992 The Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <ctype.h>
|
||||
#include <errno.h>
|
||||
#include <limits.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
* Convert a string to a long long.
|
||||
*
|
||||
* Ignores `locale' stuff. Assumes that the upper and lower case
|
||||
* alphabets and digits are each contiguous.
|
||||
*/
|
||||
long long
|
||||
strtoll(const char *nptr, char **endptr, int base)
|
||||
{
|
||||
const char *s;
|
||||
long long acc, cutoff;
|
||||
int c;
|
||||
int neg, any, cutlim;
|
||||
|
||||
/*
|
||||
* Skip white space and pick up leading +/- sign if any.
|
||||
* If base is 0, allow 0x for hex and 0 for octal, else
|
||||
* assume decimal; if base is already 16, allow 0x.
|
||||
*/
|
||||
s = nptr;
|
||||
do {
|
||||
c = (unsigned char) *s++;
|
||||
} while (isspace(c));
|
||||
if (c == '-') {
|
||||
neg = 1;
|
||||
c = *s++;
|
||||
} else {
|
||||
neg = 0;
|
||||
if (c == '+')
|
||||
c = *s++;
|
||||
}
|
||||
if ((base == 0 || base == 16) &&
|
||||
c == '0' && (*s == 'x' || *s == 'X')) {
|
||||
c = s[1];
|
||||
s += 2;
|
||||
base = 16;
|
||||
}
|
||||
if (base == 0)
|
||||
base = c == '0' ? 8 : 10;
|
||||
|
||||
/*
|
||||
* Compute the cutoff value between legal numbers and illegal
|
||||
* numbers. That is the largest legal value, divided by the
|
||||
* base. An input number that is greater than this value, if
|
||||
* followed by a legal input character, is too big. One that
|
||||
* is equal to this value may be valid or not; the limit
|
||||
* between valid and invalid numbers is then based on the last
|
||||
* digit. For instance, if the range for long longs is
|
||||
* [-9223372036854775808..9223372036854775807] and the input base
|
||||
* is 10, cutoff will be set to 922337203685477580 and cutlim to
|
||||
* either 7 (neg==0) or 8 (neg==1), meaning that if we have
|
||||
* accumulated a value > 922337203685477580, or equal but the
|
||||
* next digit is > 7 (or 8), the number is too big, and we will
|
||||
* return a range error.
|
||||
*
|
||||
* Set any if any `digits' consumed; make it negative to indicate
|
||||
* overflow.
|
||||
*/
|
||||
cutoff = neg ? LLONG_MIN : LLONG_MAX;
|
||||
cutlim = cutoff % base;
|
||||
cutoff /= base;
|
||||
if (neg) {
|
||||
if (cutlim > 0) {
|
||||
cutlim -= base;
|
||||
cutoff += 1;
|
||||
}
|
||||
cutlim = -cutlim;
|
||||
}
|
||||
for (acc = 0, any = 0;; c = (unsigned char) *s++) {
|
||||
if (isdigit(c))
|
||||
c -= '0';
|
||||
else if (isalpha(c))
|
||||
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
|
||||
else
|
||||
break;
|
||||
if (c >= base)
|
||||
break;
|
||||
if (any < 0)
|
||||
continue;
|
||||
if (neg) {
|
||||
if (acc < cutoff || (acc == cutoff && c > cutlim)) {
|
||||
any = -1;
|
||||
acc = LLONG_MIN;
|
||||
errno = ERANGE;
|
||||
} else {
|
||||
any = 1;
|
||||
acc *= base;
|
||||
acc -= c;
|
||||
}
|
||||
} else {
|
||||
if (acc > cutoff || (acc == cutoff && c > cutlim)) {
|
||||
any = -1;
|
||||
acc = LLONG_MAX;
|
||||
errno = ERANGE;
|
||||
} else {
|
||||
any = 1;
|
||||
acc *= base;
|
||||
acc += c;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (endptr != 0)
|
||||
*endptr = (char *) (any ? s - 1 : nptr);
|
||||
return (acc);
|
||||
}
|
||||
131
lib/libm/e_atan2.c
Normal file
131
lib/libm/e_atan2.c
Normal file
@@ -0,0 +1,131 @@
|
||||
|
||||
/* @(#)e_atan2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
* Special cases:
|
||||
*
|
||||
* ATAN2((anything), NaN ) is NaN;
|
||||
* ATAN2(NAN , (anything) ) is NaN;
|
||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static volatile double
|
||||
tiny = 1.0e-300;
|
||||
static const double
|
||||
zero = 0.0,
|
||||
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
|
||||
static volatile double
|
||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
double
|
||||
__ieee754_atan2(double y, double x)
|
||||
{
|
||||
double z;
|
||||
int32_t k,m,hx,hy,ix,iy;
|
||||
u_int32_t lx,ly;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
iy = hy&0x7fffffff;
|
||||
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
|
||||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
|
||||
return x+y;
|
||||
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
|
||||
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
/* when y = 0 */
|
||||
if((iy|ly)==0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
||||
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
||||
|
||||
/* when x is INF */
|
||||
if(ix==0x7ff00000) {
|
||||
if(iy==0x7ff00000) {
|
||||
switch(m) {
|
||||
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
|
||||
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
|
||||
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
|
||||
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0: return zero ; /* atan(+...,+INF) */
|
||||
case 1: return -zero ; /* atan(-...,+INF) */
|
||||
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
||||
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* when y is INF */
|
||||
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
||||
|
||||
/* compute y/x */
|
||||
k = (iy-ix)>>20;
|
||||
if(k > 60) { /* |y/x| > 2**60 */
|
||||
z=pi_o_2+0.5*pi_lo;
|
||||
m&=1;
|
||||
}
|
||||
else if(hx<0&&k<-60) z=0.0; /* 0 > |y|/x > -2**-60 */
|
||||
else z=atan(fabs(y/x)); /* safe to do y/x */
|
||||
switch (m) {
|
||||
case 0: return z ; /* atan(+,+) */
|
||||
case 1: return -z ; /* atan(-,+) */
|
||||
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo)-pi;/* atan(-,-) */
|
||||
}
|
||||
}
|
||||
|
||||
#if SUPPORT_LONG_DOUBLE
|
||||
#if LDBL_MANT_DIG == 53
|
||||
__weak_reference(atan2, atan2l);
|
||||
#endif
|
||||
#endif
|
||||
166
lib/libm/e_exp.c
Normal file
166
lib/libm/e_exp.c
Normal file
@@ -0,0 +1,166 @@
|
||||
|
||||
/* @(#)e_exp.c 1.6 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_exp(x)
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
*
|
||||
* Special cases:
|
||||
* exp(INF) is INF, exp(NaN) is NaN;
|
||||
* exp(-INF) is 0, and
|
||||
* for finite argument, only exp(0)=1 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
halF[2] = {0.5,-0.5,},
|
||||
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
||||
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
||||
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
static volatile double
|
||||
huge = 1.0e+300,
|
||||
twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
|
||||
|
||||
double
|
||||
__ieee754_exp(double x) /* default IEEE double exp */
|
||||
{
|
||||
double y,hi=0.0,lo=0.0,c,t,twopk;
|
||||
int32_t k=0,xsb;
|
||||
u_int32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
xsb = (hx>>31)&1; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out non-finite argument */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx>=0x7ff00000) {
|
||||
u_int32_t lx;
|
||||
GET_LOW_WORD(lx,x);
|
||||
if(((hx&0xfffff)|lx)!=0)
|
||||
return x+x; /* NaN */
|
||||
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
||||
}
|
||||
if(x > o_threshold) return huge*huge; /* overflow */
|
||||
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
||||
} else {
|
||||
k = (int)(invln2*x+halF[xsb]);
|
||||
t = k;
|
||||
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
||||
lo = t*ln2LO[0];
|
||||
}
|
||||
STRICT_ASSIGN(double, x, hi - lo);
|
||||
}
|
||||
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
||||
if(huge+x>one) return one+x;/* trigger inexact */
|
||||
}
|
||||
else k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
if(k >= -1021)
|
||||
INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
|
||||
else
|
||||
INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
|
||||
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
||||
if(k >= -1021) {
|
||||
if (k==1024) return y*2.0*0x1p1023;
|
||||
return y*twopk;
|
||||
} else {
|
||||
return y*twopk*twom1000;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_LONG_DOUBLE
|
||||
#if (LDBL_MANT_DIG == 53)
|
||||
__weak_reference(exp, expl);
|
||||
#endif
|
||||
#endif
|
||||
132
lib/libm/e_fmod.c
Normal file
132
lib/libm/e_fmod.c
Normal file
@@ -0,0 +1,132 @@
|
||||
|
||||
/* @(#)e_fmod.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* __ieee754_fmod(x,y)
|
||||
* Return x mod y in exact arithmetic
|
||||
* Method: shift and subtract
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, Zero[] = {0.0, -0.0,};
|
||||
|
||||
double
|
||||
__ieee754_fmod(double x, double y)
|
||||
{
|
||||
int32_t n,hx,hy,hz,ix,iy,sx,i;
|
||||
u_int32_t lx,ly,lz;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
sx = hx&0x80000000; /* sign of x */
|
||||
hx ^=sx; /* |x| */
|
||||
hy &= 0x7fffffff; /* |y| */
|
||||
|
||||
/* purge off exception values */
|
||||
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
|
||||
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
|
||||
return (x*y)/(x*y);
|
||||
if(hx<=hy) {
|
||||
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
|
||||
if(lx==ly)
|
||||
return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
|
||||
}
|
||||
|
||||
/* determine ix = ilogb(x) */
|
||||
if(hx<0x00100000) { /* subnormal x */
|
||||
if(hx==0) {
|
||||
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
|
||||
} else {
|
||||
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
|
||||
}
|
||||
} else ix = (hx>>20)-1023;
|
||||
|
||||
/* determine iy = ilogb(y) */
|
||||
if(hy<0x00100000) { /* subnormal y */
|
||||
if(hy==0) {
|
||||
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
|
||||
} else {
|
||||
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
|
||||
}
|
||||
} else iy = (hy>>20)-1023;
|
||||
|
||||
/* set up {hx,lx}, {hy,ly} and align y to x */
|
||||
if(ix >= -1022)
|
||||
hx = 0x00100000|(0x000fffff&hx);
|
||||
else { /* subnormal x, shift x to normal */
|
||||
n = -1022-ix;
|
||||
if(n<=31) {
|
||||
hx = (hx<<n)|(lx>>(32-n));
|
||||
lx <<= n;
|
||||
} else {
|
||||
hx = lx<<(n-32);
|
||||
lx = 0;
|
||||
}
|
||||
}
|
||||
if(iy >= -1022)
|
||||
hy = 0x00100000|(0x000fffff&hy);
|
||||
else { /* subnormal y, shift y to normal */
|
||||
n = -1022-iy;
|
||||
if(n<=31) {
|
||||
hy = (hy<<n)|(ly>>(32-n));
|
||||
ly <<= n;
|
||||
} else {
|
||||
hy = ly<<(n-32);
|
||||
ly = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* fix point fmod */
|
||||
n = ix - iy;
|
||||
while(n--) {
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
|
||||
else {
|
||||
if((hz|lz)==0) /* return sign(x)*0 */
|
||||
return Zero[(u_int32_t)sx>>31];
|
||||
hx = hz+hz+(lz>>31); lx = lz+lz;
|
||||
}
|
||||
}
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz>=0) {hx=hz;lx=lz;}
|
||||
|
||||
/* convert back to floating value and restore the sign */
|
||||
if((hx|lx)==0) /* return sign(x)*0 */
|
||||
return Zero[(u_int32_t)sx>>31];
|
||||
while(hx<0x00100000) { /* normalize x */
|
||||
hx = hx+hx+(lx>>31); lx = lx+lx;
|
||||
iy -= 1;
|
||||
}
|
||||
if(iy>= -1022) { /* normalize output */
|
||||
hx = ((hx-0x00100000)|((iy+1023)<<20));
|
||||
INSERT_WORDS(x,hx|sx,lx);
|
||||
} else { /* subnormal output */
|
||||
n = -1022 - iy;
|
||||
if(n<=20) {
|
||||
lx = (lx>>n)|((u_int32_t)hx<<(32-n));
|
||||
hx >>= n;
|
||||
} else if (n<=31) {
|
||||
lx = (hx<<(32-n))|(lx>>n); hx = sx;
|
||||
} else {
|
||||
lx = hx>>(n-32); hx = sx;
|
||||
}
|
||||
INSERT_WORDS(x,hx|sx,lx);
|
||||
x *= one; /* create necessary signal */
|
||||
}
|
||||
return x; /* exact output */
|
||||
}
|
||||
149
lib/libm/e_log.c
Normal file
149
lib/libm/e_log.c
Normal file
@@ -0,0 +1,149 @@
|
||||
|
||||
/* @(#)e_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_log(x)
|
||||
* Return the logrithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static const double zero = 0.0;
|
||||
static volatile double vzero = 0.0;
|
||||
|
||||
double
|
||||
__ieee754_log(double x)
|
||||
{
|
||||
double hfsq,f,s,z,R,w,t1,t2,dk;
|
||||
int32_t k,hx,i,j;
|
||||
u_int32_t lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
|
||||
k=0;
|
||||
if (hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if (((hx&0x7fffffff)|lx)==0)
|
||||
return -two54/vzero; /* log(+-0)=-inf */
|
||||
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
||||
k -= 54; x *= two54; /* subnormal number, scale up x */
|
||||
GET_HIGH_WORD(hx,x);
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
k += (hx>>20)-1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx+0x95f64)&0x100000;
|
||||
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
||||
k += (i>>20);
|
||||
f = x-1.0;
|
||||
if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
|
||||
if(f==zero) {
|
||||
if(k==0) {
|
||||
return zero;
|
||||
} else {
|
||||
dk=(double)k;
|
||||
return dk*ln2_hi+dk*ln2_lo;
|
||||
}
|
||||
}
|
||||
R = f*f*(0.5-0.33333333333333333*f);
|
||||
if(k==0) return f-R; else {dk=(double)k;
|
||||
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
dk = (double)k;
|
||||
z = s*s;
|
||||
i = hx-0x6147a;
|
||||
w = z*z;
|
||||
j = 0x6b851-hx;
|
||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
i |= j;
|
||||
R = t2+t1;
|
||||
if(i>0) {
|
||||
hfsq=0.5*f*f;
|
||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
||||
} else {
|
||||
if(k==0) return f-s*(f-R); else
|
||||
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_LONG_DOUBLE
|
||||
#if (LDBL_MANT_DIG == 53)
|
||||
__weak_reference(log, logl);
|
||||
#endif
|
||||
#endif
|
||||
@@ -32,5 +32,13 @@ MODULE_SRCS += \
|
||||
$(LOCAL_DIR)/e_powf.c \
|
||||
$(LOCAL_DIR)/s_fabs.c \
|
||||
$(LOCAL_DIR)/s_fabsf.c \
|
||||
$(LOCAL_DIR)/e_fmod.c \
|
||||
$(LOCAL_DIR)/e_log.c \
|
||||
$(LOCAL_DIR)/e_exp.c \
|
||||
$(LOCAL_DIR)/s_round.c \
|
||||
$(LOCAL_DIR)/s_ceil.c \
|
||||
$(LOCAL_DIR)/s_trunc.c \
|
||||
$(LOCAL_DIR)/s_atan.c \
|
||||
$(LOCAL_DIR)/e_atan2.c \
|
||||
|
||||
include make/module.mk
|
||||
|
||||
126
lib/libm/s_atan.c
Normal file
126
lib/libm/s_atan.c
Normal file
@@ -0,0 +1,126 @@
|
||||
/* @(#)s_atan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* atan(x)
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double atanhi[] = {
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
};
|
||||
|
||||
static const double atanlo[] = {
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
};
|
||||
|
||||
static const double aT[] = {
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
};
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
huge = 1.0e300;
|
||||
|
||||
double
|
||||
atan(double x)
|
||||
{
|
||||
double w,s1,s2,z;
|
||||
int32_t ix,hx,id;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,x);
|
||||
if(ix>0x7ff00000||
|
||||
(ix==0x7ff00000&&(low!=0)))
|
||||
return x+x; /* NaN */
|
||||
if(hx>0) return atanhi[3]+*(volatile double *)&atanlo[3];
|
||||
else return -atanhi[3]-*(volatile double *)&atanlo[3];
|
||||
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
||||
if (ix < 0x3e400000) { /* |x| < 2^-27 */
|
||||
if(huge+x>one) return x; /* raise inexact */
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabs(x);
|
||||
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
||||
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
||||
} else { /* 11/16<=|x|< 19/16 */
|
||||
id = 1; x = (x-one)/(x+one);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
||||
id = 2; x = (x-1.5)/(one+1.5*x);
|
||||
} else { /* 2.4375 <= |x| < 2^66 */
|
||||
id = 3; x = -1.0/x;
|
||||
}
|
||||
}}
|
||||
/* end of argument reduction */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
||||
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
||||
if (id<0) return x - x*(s1+s2);
|
||||
else {
|
||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||||
return (hx<0)? -z:z;
|
||||
}
|
||||
}
|
||||
|
||||
#if SUPPORT_LONG_DOUBLE
|
||||
#if LDBL_MANT_DIG == 53
|
||||
__weak_reference(atan, atanl);
|
||||
#endif
|
||||
#endif
|
||||
80
lib/libm/s_ceil.c
Normal file
80
lib/libm/s_ceil.c
Normal file
@@ -0,0 +1,80 @@
|
||||
/* @(#)s_ceil.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ceil(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to ceil(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double huge = 1.0e300;
|
||||
|
||||
double
|
||||
ceil(double x)
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i,j;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1 + (1<<(52-j0));
|
||||
if(j<i1) i0+=1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
#if SUPPORT_LONG_DOUBLE
|
||||
#if LDBL_MANT_DIG == 53
|
||||
__weak_reference(ceil, ceill);
|
||||
#endif
|
||||
#endif
|
||||
62
lib/libm/s_round.c
Normal file
62
lib/libm/s_round.c
Normal file
@@ -0,0 +1,62 @@
|
||||
/*-
|
||||
* Copyright (c) 2003, Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
double
|
||||
round(double x)
|
||||
{
|
||||
double t;
|
||||
uint32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx, x);
|
||||
if ((hx & 0x7fffffff) == 0x7ff00000)
|
||||
return (x + x);
|
||||
|
||||
if (!(hx & 0x80000000)) {
|
||||
t = floor(x);
|
||||
if (t - x <= -0.5)
|
||||
t += 1;
|
||||
return (t);
|
||||
} else {
|
||||
t = floor(-x);
|
||||
if (t + x <= -0.5)
|
||||
t += 1;
|
||||
return (-t);
|
||||
}
|
||||
}
|
||||
|
||||
#if SUPPORT_LONG_DOUBLE
|
||||
#if (LDBL_MANT_DIG == 53)
|
||||
__weak_reference(round, roundl);
|
||||
#endif
|
||||
#endif
|
||||
69
lib/libm/s_trunc.c
Normal file
69
lib/libm/s_trunc.c
Normal file
@@ -0,0 +1,69 @@
|
||||
/* @(#)s_floor.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* trunc(x)
|
||||
* Return x rounded toward 0 to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to trunc(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double huge = 1.0e300;
|
||||
|
||||
double
|
||||
trunc(double x)
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* |x|<1, so return 0*sign(x) */
|
||||
i0 &= 0x80000000U;
|
||||
i1 = 0;
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) /* raise inexact flag */
|
||||
i1 &= (~i);
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
}
|
||||
|
||||
#ifdef SUPPORT_LONG_DOUBLE
|
||||
#if LDBL_MANT_DIG == 53
|
||||
__weak_reference(trunc, truncl);
|
||||
#endif
|
||||
#endif
|
||||
Reference in New Issue
Block a user